Cargando…
Task-Driven Learned Hyperspectral Data Reduction Using End-to-End Supervised Deep Learning
An important challenge in hyperspectral imaging tasks is to cope with the large number of spectral bins. Common spectral data reduction methods do not take prior knowledge about the task into account. Consequently, sparsely occurring features that may be essential for the imaging task may not be pre...
Autores principales: | Zeegers, Mathé T., Pelt, Daniël M., van Leeuwen, Tristan, van Liere, Robert, Batenburg, Kees Joost |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321191/ https://www.ncbi.nlm.nih.gov/pubmed/34460529 http://dx.doi.org/10.3390/jimaging6120132 |
Ejemplares similares
-
Unsupervised Foreign Object Detection Based on Dual-Energy Absorptiometry in the Food Industry
por: Andriiashen, Vladyslav, et al.
Publicado: (2021) -
CT-based data generation for foreign object detection on a single X-ray projection
por: Andriiashen, Vladyslav, et al.
Publicado: (2023) -
Comparison of computed tomography image features extracted by radiomics, self-supervised learning and end-to-end deep learning for outcome prediction of oropharyngeal cancer
por: Ma, Baoqiang, et al.
Publicado: (2023) -
End-to-end Jordanian dialect speech-to-text self-supervised learning framework
por: Safieh, Ali A., et al.
Publicado: (2022) -
Supervised and Unsupervised End-to-End Deep Learning for Gene Ontology Classification of Neural In Situ Hybridization Images †
por: Cohen, Ido, et al.
Publicado: (2019)