Cargando…
Use of Very High Spatial Resolution Commercial Satellite Imagery and Deep Learning to Automatically Map Ice-Wedge Polygons across Tundra Vegetation Types
We developed a high-throughput mapping workflow, which centers on deep learning (DL) convolutional neural network (CNN) algorithms on high-performance distributed computing resources, to automatically characterize ice-wedge polygons (IWPs) from sub-meter resolution commercial satellite imagery. We a...
Autores principales: | Bhuiyan, Md Abul Ehsan, Witharana, Chandi, Liljedahl, Anna K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321207/ https://www.ncbi.nlm.nih.gov/pubmed/34460534 http://dx.doi.org/10.3390/jimaging6120137 |
Ejemplares similares
-
Understanding the Effects of Optimal Combination of Spectral Bands on Deep Learning Model Predictions: A Case Study Based on Permafrost Tundra Landform Mapping Using High Resolution Multispectral Satellite Imagery
por: Bhuiyan, Md Abul Ehsan, et al.
Publicado: (2020) -
Landscape topography structures the soil microbiome in arctic polygonal tundra
por: Taş, Neslihan, et al.
Publicado: (2018) -
Metaplasmidome-encoded functions of Siberian low-centered polygonal tundra soils
por: Gorecki, Adrian, et al.
Publicado: (2021) -
High-resolution mapping of spatial heterogeneity in ice wedge polygon geomorphology near Prudhoe Bay, Alaska
por: Abolt, Charles J., et al.
Publicado: (2020) -
Climatic, geomorphologic and hydrologic perturbations as drivers for mid‐ to late Holocene development of ice‐wedge polygons in the western Canadian Arctic
por: Wolter, J., et al.
Publicado: (2018)