Cargando…
Evaluating Performance of Microwave Image Reconstruction Algorithms: Extracting Tissue Types with Segmentation Using Machine Learning
Evaluating the quality of reconstructed images requires consistent approaches to extracting information and applying metrics. Partitioning medical images into tissue types permits the quantitative assessment of regions that contain a specific tissue. The assessment facilitates the evaluation of an i...
Autores principales: | Kurrant, Douglas, Omer, Muhammad, Abdollahi, Nasim, Mojabi, Pedram, Fear, Elise, LoVetri, Joe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321253/ https://www.ncbi.nlm.nih.gov/pubmed/34460576 http://dx.doi.org/10.3390/jimaging7010005 |
Ejemplares similares
-
Novel Stopping Criteria for Optimization-Based Microwave Breast Imaging Algorithms
por: Kaye, Cameron, et al.
Publicado: (2019) -
Surface Estimation for Microwave Imaging
por: Kurrant, Douglas, et al.
Publicado: (2017) -
Enhancement of Multimodal Microwave-Ultrasound Breast Imaging Using a Deep-Learning Technique
por: Khoshdel, Vahab, et al.
Publicado: (2019) -
Microwave Imaging of Human Forearms: Pilot Study and Image Enhancement
por: Gilmore, Colin, et al.
Publicado: (2013) -
Full 3D Microwave Breast Imaging Using a Deep-Learning Technique
por: Khoshdel, Vahab, et al.
Publicado: (2020)