Cargando…
Self-Supervised Learning of Satellite-Derived Vegetation Indices for Clustering and Visualization of Vegetation Types
Vegetation indices are commonly used techniques for the retrieval of biophysical and chemical attributes of vegetation. This paper presents the potential of an Autoencoders (AEs) and Convolutional Autoencoders (CAEs)-based self-supervised learning approach for the decorrelation and dimensionality re...
Autores principales: | Sharma, Ram C., Hara, Keitarou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321256/ https://www.ncbi.nlm.nih.gov/pubmed/34460629 http://dx.doi.org/10.3390/jimaging7020030 |
Ejemplares similares
-
A Machine Learning and Cross-Validation Approach for the Discrimination of Vegetation Physiognomic Types Using Satellite Based Multispectral and Multitemporal Data
por: Sharma, Ram C., et al.
Publicado: (2017) -
Vegetation Structure Index (VSI): Retrieving Vegetation Structural Information from Multi-Angular Satellite Remote Sensing
por: Sharma, Ram C.
Publicado: (2021) -
Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices
por: Pham, Hoa Thi, et al.
Publicado: (2022) -
Vegetative and generative maintenance of self-incompatibility in six accessions of German chamomile
por: Faehnrich, Bettina, et al.
Publicado: (2016) -
Assessment of vegetation growth and drought conditions using satellite-based vegetation health indices in Jing-Jin-Ji region of China
por: Jiang, Rengui, et al.
Publicado: (2021)