Cargando…

Data-Driven Regularization Parameter Selection in Dynamic MRI

In dynamic MRI, sufficient temporal resolution can often only be obtained using imaging protocols which produce undersampled data for each image in the time series. This has led to the popularity of compressed sensing (CS) based reconstructions. One problem in CS approaches is determining the regula...

Descripción completa

Detalles Bibliográficos
Autores principales: Hanhela, Matti, Gröhn, Olli, Kettunen, Mikko, Niinimäki, Kati, Vauhkonen, Marko, Kolehmainen, Ville
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321258/
https://www.ncbi.nlm.nih.gov/pubmed/34460637
http://dx.doi.org/10.3390/jimaging7020038
_version_ 1783730808430788608
author Hanhela, Matti
Gröhn, Olli
Kettunen, Mikko
Niinimäki, Kati
Vauhkonen, Marko
Kolehmainen, Ville
author_facet Hanhela, Matti
Gröhn, Olli
Kettunen, Mikko
Niinimäki, Kati
Vauhkonen, Marko
Kolehmainen, Ville
author_sort Hanhela, Matti
collection PubMed
description In dynamic MRI, sufficient temporal resolution can often only be obtained using imaging protocols which produce undersampled data for each image in the time series. This has led to the popularity of compressed sensing (CS) based reconstructions. One problem in CS approaches is determining the regularization parameters, which control the balance between data fidelity and regularization. We propose a data-driven approach for the total variation regularization parameter selection, where reconstructions yield expected sparsity levels in the regularization domains. The expected sparsity levels are obtained from the measurement data for temporal regularization and from a reference image for spatial regularization. Two formulations are proposed. Simultaneous search for a parameter pair yielding expected sparsity in both domains (S-surface), and a sequential parameter selection using the S-curve method (Sequential S-curve). The approaches are evaluated using simulated and experimental DCE-MRI. In the simulated test case, both methods produce a parameter pair and reconstruction that is close to the root mean square error (RMSE) optimal pair and reconstruction. In the experimental test case, the methods produce almost equal parameter selection, and the reconstructions are of high perceived quality. Both methods lead to a highly feasible selection of the regularization parameters in both test cases while the sequential method is computationally more efficient.
format Online
Article
Text
id pubmed-8321258
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83212582021-08-26 Data-Driven Regularization Parameter Selection in Dynamic MRI Hanhela, Matti Gröhn, Olli Kettunen, Mikko Niinimäki, Kati Vauhkonen, Marko Kolehmainen, Ville J Imaging Article In dynamic MRI, sufficient temporal resolution can often only be obtained using imaging protocols which produce undersampled data for each image in the time series. This has led to the popularity of compressed sensing (CS) based reconstructions. One problem in CS approaches is determining the regularization parameters, which control the balance between data fidelity and regularization. We propose a data-driven approach for the total variation regularization parameter selection, where reconstructions yield expected sparsity levels in the regularization domains. The expected sparsity levels are obtained from the measurement data for temporal regularization and from a reference image for spatial regularization. Two formulations are proposed. Simultaneous search for a parameter pair yielding expected sparsity in both domains (S-surface), and a sequential parameter selection using the S-curve method (Sequential S-curve). The approaches are evaluated using simulated and experimental DCE-MRI. In the simulated test case, both methods produce a parameter pair and reconstruction that is close to the root mean square error (RMSE) optimal pair and reconstruction. In the experimental test case, the methods produce almost equal parameter selection, and the reconstructions are of high perceived quality. Both methods lead to a highly feasible selection of the regularization parameters in both test cases while the sequential method is computationally more efficient. MDPI 2021-02-20 /pmc/articles/PMC8321258/ /pubmed/34460637 http://dx.doi.org/10.3390/jimaging7020038 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Hanhela, Matti
Gröhn, Olli
Kettunen, Mikko
Niinimäki, Kati
Vauhkonen, Marko
Kolehmainen, Ville
Data-Driven Regularization Parameter Selection in Dynamic MRI
title Data-Driven Regularization Parameter Selection in Dynamic MRI
title_full Data-Driven Regularization Parameter Selection in Dynamic MRI
title_fullStr Data-Driven Regularization Parameter Selection in Dynamic MRI
title_full_unstemmed Data-Driven Regularization Parameter Selection in Dynamic MRI
title_short Data-Driven Regularization Parameter Selection in Dynamic MRI
title_sort data-driven regularization parameter selection in dynamic mri
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321258/
https://www.ncbi.nlm.nih.gov/pubmed/34460637
http://dx.doi.org/10.3390/jimaging7020038
work_keys_str_mv AT hanhelamatti datadrivenregularizationparameterselectionindynamicmri
AT grohnolli datadrivenregularizationparameterselectionindynamicmri
AT kettunenmikko datadrivenregularizationparameterselectionindynamicmri
AT niinimakikati datadrivenregularizationparameterselectionindynamicmri
AT vauhkonenmarko datadrivenregularizationparameterselectionindynamicmri
AT kolehmainenville datadrivenregularizationparameterselectionindynamicmri