Cargando…
Domain Adaptation for Medical Image Segmentation: A Meta-Learning Method
Convolutional neural networks (CNNs) have demonstrated great achievement in increasing the accuracy and stability of medical image segmentation. However, existing CNNs are limited by the problem of dependency on the availability of training data owing to high manual annotation costs and privacy issu...
Autores principales: | Zhang, Penghao, Li, Jiayue, Wang, Yining, Pan, Judong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321260/ https://www.ncbi.nlm.nih.gov/pubmed/34460630 http://dx.doi.org/10.3390/jimaging7020031 |
Ejemplares similares
-
Transductive Transfer Learning for Domain Adaptation in Brain Magnetic Resonance Image Segmentation
por: Kushibar, Kaisar, et al.
Publicado: (2021) -
Advancing Medical Imaging Informatics by Deep Learning-Based Domain Adaptation
por: Choudhary, Anirudh, et al.
Publicado: (2020) -
Advanced Warning of Aortic Dissection on Non-Contrast CT: The Combination of Deep Learning and Morphological Characteristics
por: Yi, Yan, et al.
Publicado: (2022) -
Deploying deep learning models on unseen medical imaging using adversarial domain adaptation
por: Valliani, Aly A., et al.
Publicado: (2022) -
U-shaped GAN for Semi-Supervised Learning and Unsupervised Domain Adaptation in High Resolution Chest Radiograph Segmentation
por: Wang, Hongyu, et al.
Publicado: (2022)