Cargando…

Incoherent Radar Imaging for Breast Cancer Detection and Experimental Validation against 3D Multimodal Breast Phantoms

In this paper we consider radar approaches for breast cancer detection. The aim is to give a brief review of the main features of incoherent methods, based on beam-forming and Multiple SIgnal Classification (MUSIC) algorithms, that we have recently developed, and to compare them with classical coher...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuccaro, Antonio, Dell’Aversano, Angela, Ruvio, Giuseppe, Browne, Jacinta, Solimene, Raffaele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321263/
https://www.ncbi.nlm.nih.gov/pubmed/34460622
http://dx.doi.org/10.3390/jimaging7020023
Descripción
Sumario:In this paper we consider radar approaches for breast cancer detection. The aim is to give a brief review of the main features of incoherent methods, based on beam-forming and Multiple SIgnal Classification (MUSIC) algorithms, that we have recently developed, and to compare them with classical coherent beam-forming. Those methods have the remarkable advantage of not requiring antenna characterization/compensation, which can be problematic in view of the close (to the breast) proximity set-up usually employed in breast imaging. Moreover, we proceed to an experimental validation of one of the incoherent methods, i.e., the I-MUSIC, using the multimodal breast phantom we have previously developed. While in a previous paper we focused on the phantom manufacture and characterization, here we are mainly concerned with providing the detail of the reconstruction algorithm, in particular for a new multi-step clutter rejection method that was employed and only barely described. In this regard, this contribution can be considered as a completion of our previous study. The experiments against the phantom show promising results and highlight the crucial role played by the clutter rejection procedure.