Cargando…
Accelerating 3D Medical Image Segmentation by Adaptive Small-Scale Target Localization
The prevailing approach for three-dimensional (3D) medical image segmentation is to use convolutional networks. Recently, deep learning methods have achieved human-level performance in several important applied problems, such as volumetry for lung-cancer diagnosis or delineation for radiation therap...
Autores principales: | Shirokikh, Boris, Shevtsov, Alexey, Dalechina, Alexandra, Krivov, Egor, Kostjuchenko, Valery, Golanov, Andrey, Gombolevskiy, Victor, Morozov, Sergey, Belyaev, Mikhail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321270/ https://www.ncbi.nlm.nih.gov/pubmed/34460634 http://dx.doi.org/10.3390/jimaging7020035 |
Ejemplares similares
-
CT-Based COVID-19 triage: Deep multitask learning improves joint identification and severity quantification
por: Goncharov, Mikhail, et al.
Publicado: (2021) -
Discrepancies between frame‐ and CBCT‐based stereotactic space definition on the Gamma Knife Icon
por: Bannikova, Irina I., et al.
Publicado: (2022) -
Pilocytic Astrocytoma Enlargement Following Irradiation: Relapse or Pseudoprogression?
por: Trunin, Yury, et al.
Publicado: (2017) -
Adaptation to CT Reconstruction Kernels by Enforcing Cross-Domain Feature Maps Consistency
por: Shimovolos, Stanislav, et al.
Publicado: (2022) -
The last decade’s experience of management of central neurocytomas: Treatment strategies and new options
por: Konovalov, Alexander, et al.
Publicado: (2021)