Cargando…
EXAM: A Framework of Learning Extreme and Moderate Embeddings for Person Re-ID
Person re-identification (Re-ID) is challenging due to host of factors: the variety of human positions, difficulties in aligning bounding boxes, and complex backgrounds, among other factors. This paper proposes a new framework called EXAM (EXtreme And Moderate feature embeddings) for Re-ID tasks. Th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321272/ https://www.ncbi.nlm.nih.gov/pubmed/34460577 http://dx.doi.org/10.3390/jimaging7010006 |
Sumario: | Person re-identification (Re-ID) is challenging due to host of factors: the variety of human positions, difficulties in aligning bounding boxes, and complex backgrounds, among other factors. This paper proposes a new framework called EXAM (EXtreme And Moderate feature embeddings) for Re-ID tasks. This is done using discriminative feature learning, requiring attention-based guidance during training. Here “Extreme” refers to salient human features and “Moderate” refers to common human features. In this framework, these types of embeddings are calculated by global max-pooling and average-pooling operations respectively; and then, jointly supervised by multiple triplet and cross-entropy loss functions. The processes of deducing attention from learned embeddings and discriminative feature learning are incorporated, and benefit from each other in this end-to-end framework. From the comparative experiments and ablation studies, it is shown that the proposed EXAM is effective, and its learned feature representation reaches state-of-the-art performance. |
---|