Cargando…
Testing Segmentation Popular Loss and Variations in Three Multiclass Medical Imaging Problems
Image structures are segmented automatically using deep learning (DL) for analysis and processing. The three most popular base loss functions are cross entropy (crossE), intersect-over-the-union (IoU), and dice. Which should be used, is it useful to consider simple variations, such as modifying form...
Autor principal: | Furtado, Pedro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321275/ https://www.ncbi.nlm.nih.gov/pubmed/34460615 http://dx.doi.org/10.3390/jimaging7020016 |
Ejemplares similares
-
Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning
por: Wang, H., et al.
Publicado: (2021) -
Novel Meta-Learning Techniques for the Multiclass Image Classification Problem
por: Vogiatzis, Antonios, et al.
Publicado: (2022) -
Multiclass Level-Set Segmentation of Rust and Coating Damages in Images of Metal Structures
por: Bembenek, Michał, et al.
Publicado: (2022) -
Evaluation of Automated Multiclass Fluid Segmentation in Optical Coherence Tomography Images Using the Pegasus Fluid Segmentation Algorithms
por: Terry, Louise, et al.
Publicado: (2021) -
Automated multiclass tissue segmentation of clinical brain MRIs with lesions
por: Weiss, David A., et al.
Publicado: (2021)