Cargando…
Active Learning with Bayesian UNet for Efficient Semantic Image Segmentation
We present a sample-efficient image segmentation method using active learning, we call it Active Bayesian UNet, or AB-UNet. This is a convolutional neural network using batch normalization and max-pool dropout. The Bayesian setup is achieved by exploiting the probabilistic extension of the dropout m...
Autores principales: | Saidu, Isah Charles, Csató, Lehel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321278/ https://www.ncbi.nlm.nih.gov/pubmed/34460636 http://dx.doi.org/10.3390/jimaging7020037 |
Ejemplares similares
-
Review of Semantic Segmentation of Medical Images Using Modified Architectures of UNET
por: Krithika alias AnbuDevi, M., et al.
Publicado: (2022) -
A New Semantic Segmentation Framework Based on UNet
por: Fu, Leiyang, et al.
Publicado: (2023) -
Semantic Segmentation of Hyperspectral Remote Sensing Images Based on PSE-UNet Model
por: Li, Jiaju, et al.
Publicado: (2022) -
IntroUNET: identifying introgressed alleles via semantic segmentation
por: Ray, Dylan D., et al.
Publicado: (2023) -
SigUNet: signal peptide recognition based on semantic segmentation
por: Wu, Jhe-Ming, et al.
Publicado: (2019)