Cargando…
A Model-Based Optimization Framework for Iterative Digital Breast Tomosynthesis Image Reconstruction
Digital Breast Tomosynthesis is an X-ray imaging technique that allows a volumetric reconstruction of the breast, from a small number of low-dose two-dimensional projections. Although it is already used in the clinical setting, enhancing the quality of the recovered images is still a subject of rese...
Autores principales: | Loli Piccolomini, Elena, Morotti, Elena |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321284/ https://www.ncbi.nlm.nih.gov/pubmed/34460635 http://dx.doi.org/10.3390/jimaging7020036 |
Ejemplares similares
-
GPU acceleration of a model-based iterative method for Digital Breast Tomosynthesis
por: Cavicchioli, R., et al.
Publicado: (2020) -
A Green Prospective for Learned Post-Processing in Sparse-View Tomographic Reconstruction
por: Morotti, Elena, et al.
Publicado: (2021) -
Ambiguity in Solving Imaging Inverse Problems with Deep-Learning-Based Operators
por: Evangelista, Davide, et al.
Publicado: (2023) -
Use of a Total Variation Minimization Iterative Reconstruction Algorithm to Evaluate Reduced Projections during Digital Breast Tomosynthesis
por: Gomi, Tsutomu, et al.
Publicado: (2018) -
Monitoring Italian COVID-19 spread by a forced SEIRD model
por: Loli Piccolomini, Elena, et al.
Publicado: (2020)