Cargando…
Image Enhanced Mask R-CNN: A Deep Learning Pipeline with New Evaluation Measures for Wind Turbine Blade Defect Detection and Classification
Demand for wind power has grown, and this has increased wind turbine blade (WTB) inspections and defect repairs. This paper empirically investigates the performance of state-of-the-art deep learning algorithms, namely, YOLOv3, YOLOv4, and Mask R-CNN for detecting and classifying defects by type. The...
Autores principales: | Zhang, Jiajun, Cosma, Georgina, Watkins, Jason |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321286/ https://www.ncbi.nlm.nih.gov/pubmed/34460702 http://dx.doi.org/10.3390/jimaging7030046 |
Ejemplares similares
-
Materials for Wind Turbine Blades: An Overview
por: Mishnaevsky, Leon, et al.
Publicado: (2017) -
Advances in wind turbine blade design and materials
por: Brøndsted, Povl, et al.
Publicado: (2013) -
Multiobjective Optimization of Composite Wind Turbine Blade
por: Jureczko, Mariola, et al.
Publicado: (2022) -
Structural Testing by Torsion of Scalable Wind Turbine Blades
por: Morăraș, Ciprian Ionuț, et al.
Publicado: (2022) -
UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction
por: Zhang, Shuai, et al.
Publicado: (2015)