Cargando…
Efficient Rank-Based Diffusion Process with Assured Convergence
Visual features and representation learning strategies experienced huge advances in the previous decade, mainly supported by deep learning approaches. However, retrieval tasks are still performed mainly based on traditional pairwise dissimilarity measures, while the learned representations lie on hi...
Autores principales: | Guimarães Pedronette, Daniel Carlos, Pascotti Valem, Lucas, Latecki, Longin Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321288/ https://www.ncbi.nlm.nih.gov/pubmed/34460705 http://dx.doi.org/10.3390/jimaging7030049 |
Ejemplares similares
-
Iterated Clique Reductions in Vertex Weighted Coloring for Large Sparse Graphs
por: Fan, Yi, et al.
Publicado: (2023) -
A converging reputation ranking iteration method via the eigenvector
por: Liu, Xiao-Lu, et al.
Publicado: (2022) -
Process quality assurance for UML-based projects
por: Unhelkar, Bhuvan
Publicado: (2003) -
Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging
por: Lauzon, Carolyn B., et al.
Publicado: (2013) -
A physical model for efficient ranking in networks
por: De Bacco, Caterina, et al.
Publicado: (2018)