Cargando…
An Efficient Method for No-Reference Video Quality Assessment
Methods for No-Reference Video Quality Assessment (NR-VQA) of consumer-produced video content are largely investigated due to the spread of databases containing videos affected by natural distortions. In this work, we design an effective and efficient method for NR-VQA. The proposed method exploits...
Autores principales: | Agarla, Mirko, Celona, Luigi, Schettini, Raimondo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321305/ https://www.ncbi.nlm.nih.gov/pubmed/34460711 http://dx.doi.org/10.3390/jimaging7030055 |
Ejemplares similares
-
No-Reference Quality Assessment of In-Capture Distorted Videos
por: Agarla, Mirko, et al.
Publicado: (2020) -
Quasi Real-Time Apple Defect Segmentation Using Deep Learning
por: Agarla, Mirko, et al.
Publicado: (2023) -
A Genetic Algorithm to Combine Deep Features for the Aesthetic Assessment of Images Containing Faces
por: Celona, Luigi, et al.
Publicado: (2021) -
Fine-Grained Face Annotation Using Deep Multi-Task CNN
por: Celona, Luigi, et al.
Publicado: (2018) -
No Reference, Opinion Unaware Image Quality Assessment by Anomaly Detection
por: Leonardi, Marco, et al.
Publicado: (2021)