Cargando…
Copy-Move Forgery Detection (CMFD) Using Deep Learning for Image and Video Forensics
With the exponential growth of high-quality fake images in social networks and media, it is necessary to develop recognition algorithms for this type of content. One of the most common types of image and video editing consists of duplicating areas of the image, known as the copy-move technique. Trad...
Autores principales: | Rodriguez-Ortega, Yohanna, Ballesteros, Dora M., Renza, Diego |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321314/ https://www.ncbi.nlm.nih.gov/pubmed/34460715 http://dx.doi.org/10.3390/jimaging7030059 |
Ejemplares similares
-
Design of Automated Deep Learning-Based Fusion Model for Copy-Move Image Forgery Detection
por: Krishnaraj, N., et al.
Publicado: (2022) -
Retracted: Design of Automated Deep Learning-Based Fusion Model for Copy-Move Image Forgery Detection
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Image copy-move forgery detection and localization based on super-BPD segmentation and DCNN
por: Li, Qianwen, et al.
Publicado: (2022) -
A Survey of Partition-Based Techniques for Copy-Move Forgery Detection
por: Nathalie Diane, Wandji Nanda, et al.
Publicado: (2014) -
SPA-Net: A Deep Learning Approach Enhanced Using a Span-Partial Structure and Attention Mechanism for Image Copy-Move Forgery Detection
por: Zhao, Kaiqi, et al.
Publicado: (2023)