Cargando…
Quantitative Comparison of Deep Learning-Based Image Reconstruction Methods for Low-Dose and Sparse-Angle CT Applications
The reconstruction of computed tomography (CT) images is an active area of research. Following the rise of deep learning methods, many data-driven models have been proposed in recent years. In this work, we present the results of a data challenge that we organized, bringing together algorithm expert...
Autores principales: | Leuschner, Johannes, Schmidt, Maximilian, Ganguly, Poulami Somanya, Andriiashen, Vladyslav, Coban, Sophia Bethany, Denker, Alexander, Bauer, Dominik, Hadjifaradji, Amir, Batenburg, Kees Joost, Maass, Peter, van Eijnatten, Maureen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321320/ https://www.ncbi.nlm.nih.gov/pubmed/34460700 http://dx.doi.org/10.3390/jimaging7030044 |
Ejemplares similares
-
A cone-beam X-ray computed tomography data collection designed for machine learning
por: Der Sarkissian, Henri, et al.
Publicado: (2019) -
Unsupervised Foreign Object Detection Based on Dual-Energy Absorptiometry in the Food Industry
por: Andriiashen, Vladyslav, et al.
Publicado: (2021) -
Improving reproducibility in synchrotron tomography using implementation-adapted filters
por: Ganguly, Poulami Somanya, et al.
Publicado: (2021) -
CT-based data generation for foreign object detection on a single X-ray projection
por: Andriiashen, Vladyslav, et al.
Publicado: (2023) -
Explorative Imaging and Its Implementation at the FleX-ray Laboratory
por: Coban, Sophia Bethany, et al.
Publicado: (2020)