Cargando…
Transfer Learning in Magnetic Resonance Brain Imaging: A Systematic Review
(1) Background: Transfer learning refers to machine learning techniques that focus on acquiring knowledge from related tasks to improve generalization in the tasks of interest. In magnetic resonance imaging (MRI), transfer learning is important for developing strategies that address the variation in...
Autores principales: | Valverde, Juan Miguel, Imani, Vandad, Abdollahzadeh, Ali, De Feo, Riccardo, Prakash, Mithilesh, Ciszek, Robert, Tohka, Jussi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321322/ https://www.ncbi.nlm.nih.gov/pubmed/34460516 http://dx.doi.org/10.3390/jimaging7040066 |
Ejemplares similares
-
Automatic Cerebral Hemisphere Segmentation in Rat MRI with Ischemic Lesions via Attention-based Convolutional Neural Networks
por: Valverde, Juan Miguel, et al.
Publicado: (2022) -
RatLesNetv2: A Fully Convolutional Network for Rodent Brain Lesion Segmentation
por: Valverde, Juan Miguel, et al.
Publicado: (2020) -
Structural Brain Imaging Phenotypes of Mild Cognitive Impairment (MCI) and Alzheimer's Disease (AD) Found by Hierarchical Clustering
por: Kärkkäinen, Mikko, et al.
Publicado: (2020) -
Transductive Transfer Learning for Domain Adaptation in Brain Magnetic Resonance Image Segmentation
por: Kushibar, Kaisar, et al.
Publicado: (2021) -
Convolutional Neural Networks Enable Robust Automatic Segmentation of the Rat Hippocampus in MRI After Traumatic Brain Injury
por: De Feo, Riccardo, et al.
Publicado: (2022)