Cargando…
Investigating the Potential of Network Optimization for a Constrained Object Detection Problem
Object detection models are usually trained and evaluated on highly complicated, challenging academic datasets, which results in deep networks requiring lots of computations. However, a lot of operational use-cases consist of more constrained situations: they have a limited number of classes to be d...
Autores principales: | Ophoff, Tanguy, Gullentops, Cédric, Van Beeck, Kristof, Goedemé, Toon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321328/ https://www.ncbi.nlm.nih.gov/pubmed/34460514 http://dx.doi.org/10.3390/jimaging7040064 |
Ejemplares similares
-
Exploring RGB+Depth Fusion for Real-Time Object Detection
por: Ophoff, Tanguy, et al.
Publicado: (2019) -
A Multi-Objective Carnivorous Plant Algorithm for Solving Constrained Multi-Objective Optimization Problems
por: Yang, Yufei, et al.
Publicado: (2023) -
Network control by a constrained external agent as a continuous optimization problem
por: Nys, Jannes, et al.
Publicado: (2022) -
Geometry of distribution-constrained optimal stopping problems
por: Beiglböck, Mathias, et al.
Publicado: (2018) -
A Hybrid Pathfinder Optimizer for Unconstrained and Constrained Optimization Problems
por: Qi, Xiangbo, et al.
Publicado: (2020)