Cargando…
End-to-End Deep One-Class Learning for Anomaly Detection in UAV Video Stream
In recent years, the use of drones for surveillance tasks has been on the rise worldwide. However, in the context of anomaly detection, only normal events are available for the learning process. Therefore, the implementation of a generative learning method in an unsupervised mode to solve this probl...
Autores principales: | Hamdi, Slim, Bouindour, Samir, Snoussi, Hichem, Wang, Tian, Abid, Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321331/ https://www.ncbi.nlm.nih.gov/pubmed/34460686 http://dx.doi.org/10.3390/jimaging7050090 |
Ejemplares similares
-
Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking
por: Zhao, Jiang, et al.
Publicado: (2022) -
A QoE-Oriented Uplink Allocation for Multi-UAV Video Streaming
por: He, Chao, et al.
Publicado: (2019) -
Online Least Squares One-Class Support Vector Machines-Based Abnormal Visual Event Detection
por: Wang, Tian, et al.
Publicado: (2013) -
An Intuitive End-to-End Human-UAV Interaction System for Field Exploration
por: Jiao, Ran, et al.
Publicado: (2020) -
Anomaly Detection in Videos Using Two-Stream Autoencoder with Post Hoc Interpretability
por: Feng, Jiangfan, et al.
Publicado: (2021)