Cargando…
A GAN-Based Self-Training Framework for Unsupervised Domain Adaptive Person Re-Identification
As a crucial task in surveillance and security, person re-identification (re-ID) aims to identify the targeted pedestrians across multiple images captured by non-overlapping cameras. However, existing person re-ID solutions have two main challenges: the lack of pedestrian identification labels in th...
Autores principales: | Li, Yuanyuan, Chen, Sixin, Qi, Guanqiu, Zhu, Zhiqin, Haner, Matthew, Cai, Ruihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321335/ https://www.ncbi.nlm.nih.gov/pubmed/34460512 http://dx.doi.org/10.3390/jimaging7040062 |
Ejemplares similares
-
EXAM: A Framework of Learning Extreme and Moderate Embeddings for Person Re-ID
por: Qi, Guanqiu, et al.
Publicado: (2021) -
Stable Median Centre Clustering for Unsupervised Domain Adaptation Person Re-Identification
por: Guo, Jifeng, et al.
Publicado: (2021) -
Attentive Continuous Generative Self-training for Unsupervised Domain Adaptive Medical Image Translation
por: Liu, Xiaofeng, et al.
Publicado: (2023) -
U-shaped GAN for Semi-Supervised Learning and Unsupervised Domain Adaptation in High Resolution Chest Radiograph Segmentation
por: Wang, Hongyu, et al.
Publicado: (2022) -
Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models
por: Gómez, Jose L., et al.
Publicado: (2023)