Cargando…
UnCanny: Exploiting Reversed Edge Detection as a Basis for Object Tracking in Video
Few object detection methods exist which can resolve small objects (<20 pixels) from complex static backgrounds without significant computational expense. A framework capable of meeting these needs which reverses the steps in classic edge detection methods using the Canny filter for edge detectio...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321341/ https://www.ncbi.nlm.nih.gov/pubmed/34460673 http://dx.doi.org/10.3390/jimaging7050077 |
_version_ | 1783730829627752448 |
---|---|
author | Honeycutt, Wesley T. Bridge, Eli S. |
author_facet | Honeycutt, Wesley T. Bridge, Eli S. |
author_sort | Honeycutt, Wesley T. |
collection | PubMed |
description | Few object detection methods exist which can resolve small objects (<20 pixels) from complex static backgrounds without significant computational expense. A framework capable of meeting these needs which reverses the steps in classic edge detection methods using the Canny filter for edge detection is presented here. Sample images taken from sequential frames of video footage were processed by subtraction, thresholding, Sobel edge detection, Gaussian blurring, and Zhang–Suen edge thinning to identify objects which have moved between the two frames. The results of this method show distinct contours applicable to object tracking algorithms with minimal “false positive” noise. This framework may be used with other edge detection methods to produce robust, low-overhead object tracking methods. |
format | Online Article Text |
id | pubmed-8321341 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83213412021-08-26 UnCanny: Exploiting Reversed Edge Detection as a Basis for Object Tracking in Video Honeycutt, Wesley T. Bridge, Eli S. J Imaging Communication Few object detection methods exist which can resolve small objects (<20 pixels) from complex static backgrounds without significant computational expense. A framework capable of meeting these needs which reverses the steps in classic edge detection methods using the Canny filter for edge detection is presented here. Sample images taken from sequential frames of video footage were processed by subtraction, thresholding, Sobel edge detection, Gaussian blurring, and Zhang–Suen edge thinning to identify objects which have moved between the two frames. The results of this method show distinct contours applicable to object tracking algorithms with minimal “false positive” noise. This framework may be used with other edge detection methods to produce robust, low-overhead object tracking methods. MDPI 2021-04-23 /pmc/articles/PMC8321341/ /pubmed/34460673 http://dx.doi.org/10.3390/jimaging7050077 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Honeycutt, Wesley T. Bridge, Eli S. UnCanny: Exploiting Reversed Edge Detection as a Basis for Object Tracking in Video |
title | UnCanny: Exploiting Reversed Edge Detection as a Basis for Object Tracking in Video |
title_full | UnCanny: Exploiting Reversed Edge Detection as a Basis for Object Tracking in Video |
title_fullStr | UnCanny: Exploiting Reversed Edge Detection as a Basis for Object Tracking in Video |
title_full_unstemmed | UnCanny: Exploiting Reversed Edge Detection as a Basis for Object Tracking in Video |
title_short | UnCanny: Exploiting Reversed Edge Detection as a Basis for Object Tracking in Video |
title_sort | uncanny: exploiting reversed edge detection as a basis for object tracking in video |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321341/ https://www.ncbi.nlm.nih.gov/pubmed/34460673 http://dx.doi.org/10.3390/jimaging7050077 |
work_keys_str_mv | AT honeycuttwesleyt uncannyexploitingreversededgedetectionasabasisforobjecttrackinginvideo AT bridgeelis uncannyexploitingreversededgedetectionasabasisforobjecttrackinginvideo |