Cargando…
Variational Autoencoder for Image-Based Augmentation of Eye-Tracking Data
Over the past decade, deep learning has achieved unprecedented successes in a diversity of application domains, given large-scale datasets. However, particular domains, such as healthcare, inherently suffer from data paucity and imbalance. Moreover, datasets could be largely inaccessible due to priv...
Autores principales: | Elbattah, Mahmoud, Loughnane, Colm, Guérin, Jean-Luc, Carette, Romuald, Cilia, Federica, Dequen, Gilles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321343/ https://www.ncbi.nlm.nih.gov/pubmed/34460679 http://dx.doi.org/10.3390/jimaging7050083 |
Ejemplares similares
-
Computer-Aided Screening of Autism Spectrum Disorder: Eye-Tracking Study Using Data Visualization and Deep Learning
por: Cilia, Federica, et al.
Publicado: (2021) -
Use of Artificial Intelligence to Manage Patient Flow in Emergency Department during the COVID-19 Pandemic: A Prospective, Single-Center Study
por: Arnaud, Emilien, et al.
Publicado: (2022) -
Predictive models in emergency medicine and their missing data strategies: a systematic review
por: Arnaud, Emilien, et al.
Publicado: (2023) -
Data augmentation using Variational Autoencoders for improvement of respiratory disease classification
por: Saldanha, Jane, et al.
Publicado: (2022) -
Hair removal in dermoscopy images using variational autoencoders
por: Bardou, Dalal, et al.
Publicado: (2022)