Cargando…
Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma
Accurate and fast assessment of resection margins is an essential part of a dermatopathologist’s clinical routine. In this work, we successfully develop a deep learning method to assist the dermatopathologists by marking critical regions that have a high probability of exhibiting pathological featur...
Autores principales: | Le’Clerc Arrastia, Jean, Heilenkötter, Nick, Otero Baguer, Daniel, Hauberg-Lotte, Lena, Boskamp, Tobias, Hetzer, Sonja, Duschner, Nicole, Schaller, Jörg, Maass, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321345/ https://www.ncbi.nlm.nih.gov/pubmed/34460521 http://dx.doi.org/10.3390/jimaging7040071 |
Ejemplares similares
-
Multimodal Lung Cancer Subtyping Using Deep Learning Neural Networks on Whole Slide Tissue Images and MALDI MSI
por: Janßen, Charlotte, et al.
Publicado: (2022) -
Evaluation of a Deep Learning Approach to Differentiate Bowen’s Disease and Seborrheic Keratosis
por: Jansen, Philipp, et al.
Publicado: (2022) -
Trichilemmoma in continuity with pigmented basal cell carcinoma; with dermatoscopy and dermatopathology
por: Kaptan, Moayad Al, et al.
Publicado: (2015) -
A New Semantic Segmentation Framework Based on UNet
por: Fu, Leiyang, et al.
Publicado: (2023) -
Weight Pruning-UNet: Weight Pruning UNet with Depth-wise Separable Convolutions for Semantic Segmentation of Kidney Tumors
por: Rao, Patike Kiran, et al.
Publicado: (2022)