Cargando…
DCNet: Noise-Robust Convolutional Neural Networks for Degradation Classification on Ancient Documents
Analysis of degraded ancient documents is challenging due to the severity and combination of degradation present in a single image. Ancient documents also suffer from additional noise during the digitalization process, particularly when digitalization is done using low-specification devices and/or u...
Autores principales: | Arnia, Fitri, Saddami, Khairun, Munadi, Khairul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321348/ http://dx.doi.org/10.3390/jimaging7070114 |
Ejemplares similares
-
Effective and fast binarization method for combined degradation on ancient documents
por: Saddami, Khairun, et al.
Publicado: (2019) -
Homomorphic Filtering and Phase-Based Matching for Cross-Spectral Cross-Distance Face Recognition
por: Arnia, Fitri, et al.
Publicado: (2021) -
Cross-spectral iris recognition using phase-based matching and homomorphic filtering
por: Oktiana, Maulisa, et al.
Publicado: (2020) -
A secure online image trading system for untrusted cloud environments
por: Munadi, Khairul, et al.
Publicado: (2015) -
Bi-DCNet: Bilateral Network with Dilated Convolutions for Left Ventricle Segmentation
por: Ye, Zi, et al.
Publicado: (2023)