Cargando…
HOSVD-Based Algorithm for Weighted Tensor Completion
Matrix completion, the problem of completing missing entries in a data matrix with low-dimensional structure (such as rank), has seen many fruitful approaches and analyses. Tensor completion is the tensor analog that attempts to impute missing tensor entries from similar low-rank type assumptions. I...
Autores principales: | Chao, Zehan, Huang, Longxiu, Needell, Deanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321375/ http://dx.doi.org/10.3390/jimaging7070110 |
Ejemplares similares
-
Novel Framework Based on HOSVD for Ski Goggles Defect Detection and Classification
por: Le, Ngoc Tuyen, et al.
Publicado: (2019) -
Short-Term Rental Forecast of Urban Public Bicycle Based on the HOSVD-LSTM Model in Smart City
por: Li, Dazhou, et al.
Publicado: (2020) -
Rank-Adaptive Tensor Completion Based on Tucker Decomposition
por: Liu, Siqi, et al.
Publicado: (2023) -
High-speed tensor tomography: iterative reconstruction tensor tomography (IRTT) algorithm
por: Gao, Zirui, et al.
Publicado: (2019) -
Traffic Speed Data Imputation Method Based on Tensor Completion
por: Ran, Bin, et al.
Publicado: (2015)