Cargando…
ChainLineNet: Deep-Learning-Based Segmentation and Parameterization of Chain Lines in Historical Prints
The paper structure of historical prints is sort of a unique fingerprint. Paper with the same origin shows similar chain line distances. As the manual measurement of chain line distances is time consuming, the automatic detection of chain lines is beneficial. We propose an end-to-end trainable deep...
Autores principales: | Sindel, Aline, Klinke, Thomas, Maier, Andreas, Christlein, Vincent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321379/ http://dx.doi.org/10.3390/jimaging7070120 |
Ejemplares similares
-
Deep learning for terahertz image denoising in nondestructive historical document analysis
por: Dutta, Balaka, et al.
Publicado: (2022) -
Browsing through sealed historical manuscripts by using 3-D computed tomography with low-brilliance X-ray sources
por: Stromer, Daniel, et al.
Publicado: (2018) -
Drag of Clean and Fouled Net Panels – Measurements and Parameterization of Fouling
por: Gansel, Lars Christian, et al.
Publicado: (2015) -
Deep learning-based patient re-identification is able to exploit the biometric nature of medical chest X-ray data
por: Packhäuser, Kai, et al.
Publicado: (2022) -
Towards the proton drip-line along the cadmium isotopic chain
por: CERN. Geneva. ISOLDE Experiments Committee
Publicado: (1993)