Cargando…
Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19
SARS-CoV-2 infection poses a global health crisis. In parallel with the ongoing world effort to identify therapeutic solutions, there is a critical need for improvement in the prognosis of COVID-19. Here, we report plasma proteome fingerprinting that predict high (hospitalized) and low-risk (outpati...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321665/ https://www.ncbi.nlm.nih.gov/pubmed/34168074 http://dx.doi.org/10.26508/lsa.202000946 |
_version_ | 1783730899256344576 |
---|---|
author | Lazari, Lucas Cardoso Ghilardi, Fabio De Rose Rosa-Fernandes, Livia Assis, Diego M Nicolau, José Carlos Santiago, Veronica Feijoli Dalçóquio, Talia Falcão Angeli, Claudia B Bertolin, Adriadne Justi Marinho, Claudio RF Wrenger, Carsten Durigon, Edison Luiz Siciliano, Rinaldo Focaccia Palmisano, Giuseppe |
author_facet | Lazari, Lucas Cardoso Ghilardi, Fabio De Rose Rosa-Fernandes, Livia Assis, Diego M Nicolau, José Carlos Santiago, Veronica Feijoli Dalçóquio, Talia Falcão Angeli, Claudia B Bertolin, Adriadne Justi Marinho, Claudio RF Wrenger, Carsten Durigon, Edison Luiz Siciliano, Rinaldo Focaccia Palmisano, Giuseppe |
author_sort | Lazari, Lucas Cardoso |
collection | PubMed |
description | SARS-CoV-2 infection poses a global health crisis. In parallel with the ongoing world effort to identify therapeutic solutions, there is a critical need for improvement in the prognosis of COVID-19. Here, we report plasma proteome fingerprinting that predict high (hospitalized) and low-risk (outpatients) cases of COVID-19 identified by a platform that combines machine learning with matrix-assisted laser desorption ionization mass spectrometry analysis. Sample preparation, MS, and data analysis parameters were optimized to achieve an overall accuracy of 92%, sensitivity of 93%, and specificity of 92% in dataset without feature selection. We identified two distinct regions in the MALDI-TOF profile belonging to the same proteoforms. A combination of SDS–PAGE and quantitative bottom-up proteomic analysis allowed the identification of intact and truncated forms of serum amyloid A-1 and A-2 proteins, both already described as biomarkers for viral infections in the acute phase. Unbiased discrimination of high- and low-risk COVID-19 patients using a technology that is currently in clinical use may have a prompt application in the noninvasive prognosis of COVID-19. Further validation will consolidate its clinical utility. |
format | Online Article Text |
id | pubmed-8321665 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-83216652021-08-04 Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19 Lazari, Lucas Cardoso Ghilardi, Fabio De Rose Rosa-Fernandes, Livia Assis, Diego M Nicolau, José Carlos Santiago, Veronica Feijoli Dalçóquio, Talia Falcão Angeli, Claudia B Bertolin, Adriadne Justi Marinho, Claudio RF Wrenger, Carsten Durigon, Edison Luiz Siciliano, Rinaldo Focaccia Palmisano, Giuseppe Life Sci Alliance Research Articles SARS-CoV-2 infection poses a global health crisis. In parallel with the ongoing world effort to identify therapeutic solutions, there is a critical need for improvement in the prognosis of COVID-19. Here, we report plasma proteome fingerprinting that predict high (hospitalized) and low-risk (outpatients) cases of COVID-19 identified by a platform that combines machine learning with matrix-assisted laser desorption ionization mass spectrometry analysis. Sample preparation, MS, and data analysis parameters were optimized to achieve an overall accuracy of 92%, sensitivity of 93%, and specificity of 92% in dataset without feature selection. We identified two distinct regions in the MALDI-TOF profile belonging to the same proteoforms. A combination of SDS–PAGE and quantitative bottom-up proteomic analysis allowed the identification of intact and truncated forms of serum amyloid A-1 and A-2 proteins, both already described as biomarkers for viral infections in the acute phase. Unbiased discrimination of high- and low-risk COVID-19 patients using a technology that is currently in clinical use may have a prompt application in the noninvasive prognosis of COVID-19. Further validation will consolidate its clinical utility. Life Science Alliance LLC 2021-06-24 /pmc/articles/PMC8321665/ /pubmed/34168074 http://dx.doi.org/10.26508/lsa.202000946 Text en © 2021 Lazari et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Articles Lazari, Lucas Cardoso Ghilardi, Fabio De Rose Rosa-Fernandes, Livia Assis, Diego M Nicolau, José Carlos Santiago, Veronica Feijoli Dalçóquio, Talia Falcão Angeli, Claudia B Bertolin, Adriadne Justi Marinho, Claudio RF Wrenger, Carsten Durigon, Edison Luiz Siciliano, Rinaldo Focaccia Palmisano, Giuseppe Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19 |
title | Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19 |
title_full | Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19 |
title_fullStr | Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19 |
title_full_unstemmed | Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19 |
title_short | Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19 |
title_sort | prognostic accuracy of maldi-tof mass spectrometric analysis of plasma in covid-19 |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321665/ https://www.ncbi.nlm.nih.gov/pubmed/34168074 http://dx.doi.org/10.26508/lsa.202000946 |
work_keys_str_mv | AT lazarilucascardoso prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT ghilardifabioderose prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT rosafernandeslivia prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT assisdiegom prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT nicolaujosecarlos prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT santiagoveronicafeijoli prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT dalcoquiotaliafalcao prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT angeliclaudiab prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT bertolinadriadnejusti prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT marinhoclaudiorf prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT wrengercarsten prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT durigonedisonluiz prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT sicilianorinaldofocaccia prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 AT palmisanogiuseppe prognosticaccuracyofmalditofmassspectrometricanalysisofplasmaincovid19 |