Cargando…
Prediction of malignancy for solitary pulmonary nodules based on imaging, clinical characteristics and tumor marker levels
OBJECTIVE: To establish a prediction model of malignancy for solitary pulmonary nodules (SPNs) on the basis of imaging, clinical characteristics and tumor marker levels. METHODS: Totally, 341 cases of SPNs were enrolled in this retrospective study, in which 70% were selected as the training group (n...
Autores principales: | Hou, Hongjun, Yu, Shui, Xu, Zushan, Zhang, Hongsheng, Liu, Jie, Zhang, Wenjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322042/ https://www.ncbi.nlm.nih.gov/pubmed/33284149 http://dx.doi.org/10.1097/CEJ.0000000000000637 |
Ejemplares similares
-
Assessment of Plasma Proteomics Biomarker’s Ability to Distinguish Benign From Malignant Lung Nodules: Results of the PANOPTIC (Pulmonary Nodule Plasma Proteomic Classifier) Trial
por: Silvestri, Gerard A., et al.
Publicado: (2018) -
External validation of a convolutional neural network artificial intelligence tool to predict malignancy in pulmonary nodules
por: Baldwin, David R, et al.
Publicado: (2020) -
Cone beam CT-guided navigation bronchoscopy: a cost-effective alternative to CT-guided transthoracic biopsy for diagnosis of peripheral pulmonary nodules
por: Kops, Stephan E P, et al.
Publicado: (2022) -
Predicting survival in malignant pleural mesothelioma using routine clinical and laboratory characteristics
por: Gunatilake, Samal, et al.
Publicado: (2021) -
Three-dimensional printing template for intraoperative localization of pulmonary nodules in the pleural cavity
por: Tang, Hai, et al.
Publicado: (2022)