Cargando…
A theoretical framework for general design of two-materials composed diffractive fresnel lens
Near 100% of diffractive efficiency for diffractive optical elements (DOEs) is one of the most required optical performances in broadband imaging applications. Of all flat DOEs, none seems to interest researchers as much as Two-Materials Composed Diffractive Fresnel Lens (TM-DFL) among the most prom...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322055/ https://www.ncbi.nlm.nih.gov/pubmed/34326425 http://dx.doi.org/10.1038/s41598-021-94953-4 |
Sumario: | Near 100% of diffractive efficiency for diffractive optical elements (DOEs) is one of the most required optical performances in broadband imaging applications. Of all flat DOEs, none seems to interest researchers as much as Two-Materials Composed Diffractive Fresnel Lens (TM-DFL) among the most promising flat DOEs. An approach of the near 100% of diffractive efficiency for TM-DFL once developed to determine the design rules mainly takes the advantage of numerical computation by methods of mapping and fitting. Despite a curved line of near 100% of diffractive efficiency can be generated in the Abbe and partial dispersion diagram, it is not able to analytically elaborate the relationship between two optical materials that compose the TM-DFL. Here, we present a theoretical framework, based on the fundaments of Cauchy's equation, Abbe number, partial dispersion, and the diffraction theory of Fresnel lens, for obtaining a general design formalism, so to perform the perfect material matching between two different optical materials for achieving the near 100% of diffractive efficiency for TM-DFL in the broadband imaging applications. |
---|