Cargando…
Lung Cancer Segmentation With Transfer Learning: Usefulness of a Pretrained Model Constructed From an Artificial Dataset Generated Using a Generative Adversarial Network
Purpose: The purpose of this study was to develop and evaluate lung cancer segmentation with a pretrained model and transfer learning. The pretrained model was constructed from an artificial dataset generated using a generative adversarial network (GAN). Materials and Methods: Three public datasets...
Autores principales: | Nishio, Mizuho, Fujimoto, Koji, Matsuo, Hidetoshi, Muramatsu, Chisako, Sakamoto, Ryo, Fujita, Hiroshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322116/ https://www.ncbi.nlm.nih.gov/pubmed/34337394 http://dx.doi.org/10.3389/frai.2021.694815 |
Ejemplares similares
-
The Generative Adversarial Brain
por: Gershman, Samuel J.
Publicado: (2019) -
Toward Sharing Brain Images: Differentially Private TOF-MRA Images With Segmentation Labels Using Generative Adversarial Networks
por: Kossen, Tabea, et al.
Publicado: (2022) -
GANterfactual—Counterfactual Explanations for Medical Non-experts Using Generative Adversarial Learning
por: Mertes, Silvan, et al.
Publicado: (2022) -
Healthy-unhealthy animal detection using semi-supervised generative adversarial network
por: Almal, Shubh, et al.
Publicado: (2023) -
Person image generation through graph-based and appearance-decomposed generative adversarial network
por: He, Yuling, et al.
Publicado: (2021)