Cargando…

Proton switching molecular magnetoelectricity

The convergence of proton conduction and multiferroics is generating a compelling opportunity to achieve strong magnetoelectric coupling and magneto-ionics, offering a versatile platform to realize molecular magnetoelectrics. Here we describe machine learning coupled with additive manufacturing to a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Yong, Broderick, Scott, Guo, Zipeng, N’Diaye, Alpha T., Bola, Jaspal S., Malissa, Hans, Li, Cheng, Zhang, Qiang, Huang, Yulong, Jia, Quanxi, Boehme, Christoph, Vardeny, Z. Valy, Zhou, Chi, Ren, Shenqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322162/
https://www.ncbi.nlm.nih.gov/pubmed/34326334
http://dx.doi.org/10.1038/s41467-021-24941-9
_version_ 1783730993837899776
author Hu, Yong
Broderick, Scott
Guo, Zipeng
N’Diaye, Alpha T.
Bola, Jaspal S.
Malissa, Hans
Li, Cheng
Zhang, Qiang
Huang, Yulong
Jia, Quanxi
Boehme, Christoph
Vardeny, Z. Valy
Zhou, Chi
Ren, Shenqiang
author_facet Hu, Yong
Broderick, Scott
Guo, Zipeng
N’Diaye, Alpha T.
Bola, Jaspal S.
Malissa, Hans
Li, Cheng
Zhang, Qiang
Huang, Yulong
Jia, Quanxi
Boehme, Christoph
Vardeny, Z. Valy
Zhou, Chi
Ren, Shenqiang
author_sort Hu, Yong
collection PubMed
description The convergence of proton conduction and multiferroics is generating a compelling opportunity to achieve strong magnetoelectric coupling and magneto-ionics, offering a versatile platform to realize molecular magnetoelectrics. Here we describe machine learning coupled with additive manufacturing to accelerate the design strategy for hydrogen-bonded multiferroic macromolecules accompanied by strong proton dependence of magnetic properties. The proton switching magnetoelectricity occurs in three-dimensional molecular heterogeneous solids. It consists of a molecular magnet network as proton reservoir to modulate ferroelectric polarization, while molecular ferroelectrics charging proton transfer to reversibly manipulate magnetism. The magnetoelectric coupling induces a reversible 29% magnetization control at ferroelectric phase transition with a broad thermal hysteresis width of 160 K (192 K to 352 K), while a room-temperature reversible magnetic modulation is realized at a low electric field stimulus of 1 kV cm(−1). The findings of electrostatic proton transfer provide a pathway of proton mediated magnetization control in hierarchical molecular multiferroics.
format Online
Article
Text
id pubmed-8322162
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-83221622021-08-03 Proton switching molecular magnetoelectricity Hu, Yong Broderick, Scott Guo, Zipeng N’Diaye, Alpha T. Bola, Jaspal S. Malissa, Hans Li, Cheng Zhang, Qiang Huang, Yulong Jia, Quanxi Boehme, Christoph Vardeny, Z. Valy Zhou, Chi Ren, Shenqiang Nat Commun Article The convergence of proton conduction and multiferroics is generating a compelling opportunity to achieve strong magnetoelectric coupling and magneto-ionics, offering a versatile platform to realize molecular magnetoelectrics. Here we describe machine learning coupled with additive manufacturing to accelerate the design strategy for hydrogen-bonded multiferroic macromolecules accompanied by strong proton dependence of magnetic properties. The proton switching magnetoelectricity occurs in three-dimensional molecular heterogeneous solids. It consists of a molecular magnet network as proton reservoir to modulate ferroelectric polarization, while molecular ferroelectrics charging proton transfer to reversibly manipulate magnetism. The magnetoelectric coupling induces a reversible 29% magnetization control at ferroelectric phase transition with a broad thermal hysteresis width of 160 K (192 K to 352 K), while a room-temperature reversible magnetic modulation is realized at a low electric field stimulus of 1 kV cm(−1). The findings of electrostatic proton transfer provide a pathway of proton mediated magnetization control in hierarchical molecular multiferroics. Nature Publishing Group UK 2021-07-29 /pmc/articles/PMC8322162/ /pubmed/34326334 http://dx.doi.org/10.1038/s41467-021-24941-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hu, Yong
Broderick, Scott
Guo, Zipeng
N’Diaye, Alpha T.
Bola, Jaspal S.
Malissa, Hans
Li, Cheng
Zhang, Qiang
Huang, Yulong
Jia, Quanxi
Boehme, Christoph
Vardeny, Z. Valy
Zhou, Chi
Ren, Shenqiang
Proton switching molecular magnetoelectricity
title Proton switching molecular magnetoelectricity
title_full Proton switching molecular magnetoelectricity
title_fullStr Proton switching molecular magnetoelectricity
title_full_unstemmed Proton switching molecular magnetoelectricity
title_short Proton switching molecular magnetoelectricity
title_sort proton switching molecular magnetoelectricity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322162/
https://www.ncbi.nlm.nih.gov/pubmed/34326334
http://dx.doi.org/10.1038/s41467-021-24941-9
work_keys_str_mv AT huyong protonswitchingmolecularmagnetoelectricity
AT broderickscott protonswitchingmolecularmagnetoelectricity
AT guozipeng protonswitchingmolecularmagnetoelectricity
AT ndiayealphat protonswitchingmolecularmagnetoelectricity
AT bolajaspals protonswitchingmolecularmagnetoelectricity
AT malissahans protonswitchingmolecularmagnetoelectricity
AT licheng protonswitchingmolecularmagnetoelectricity
AT zhangqiang protonswitchingmolecularmagnetoelectricity
AT huangyulong protonswitchingmolecularmagnetoelectricity
AT jiaquanxi protonswitchingmolecularmagnetoelectricity
AT boehmechristoph protonswitchingmolecularmagnetoelectricity
AT vardenyzvaly protonswitchingmolecularmagnetoelectricity
AT zhouchi protonswitchingmolecularmagnetoelectricity
AT renshenqiang protonswitchingmolecularmagnetoelectricity