Cargando…
Proton switching molecular magnetoelectricity
The convergence of proton conduction and multiferroics is generating a compelling opportunity to achieve strong magnetoelectric coupling and magneto-ionics, offering a versatile platform to realize molecular magnetoelectrics. Here we describe machine learning coupled with additive manufacturing to a...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322162/ https://www.ncbi.nlm.nih.gov/pubmed/34326334 http://dx.doi.org/10.1038/s41467-021-24941-9 |
_version_ | 1783730993837899776 |
---|---|
author | Hu, Yong Broderick, Scott Guo, Zipeng N’Diaye, Alpha T. Bola, Jaspal S. Malissa, Hans Li, Cheng Zhang, Qiang Huang, Yulong Jia, Quanxi Boehme, Christoph Vardeny, Z. Valy Zhou, Chi Ren, Shenqiang |
author_facet | Hu, Yong Broderick, Scott Guo, Zipeng N’Diaye, Alpha T. Bola, Jaspal S. Malissa, Hans Li, Cheng Zhang, Qiang Huang, Yulong Jia, Quanxi Boehme, Christoph Vardeny, Z. Valy Zhou, Chi Ren, Shenqiang |
author_sort | Hu, Yong |
collection | PubMed |
description | The convergence of proton conduction and multiferroics is generating a compelling opportunity to achieve strong magnetoelectric coupling and magneto-ionics, offering a versatile platform to realize molecular magnetoelectrics. Here we describe machine learning coupled with additive manufacturing to accelerate the design strategy for hydrogen-bonded multiferroic macromolecules accompanied by strong proton dependence of magnetic properties. The proton switching magnetoelectricity occurs in three-dimensional molecular heterogeneous solids. It consists of a molecular magnet network as proton reservoir to modulate ferroelectric polarization, while molecular ferroelectrics charging proton transfer to reversibly manipulate magnetism. The magnetoelectric coupling induces a reversible 29% magnetization control at ferroelectric phase transition with a broad thermal hysteresis width of 160 K (192 K to 352 K), while a room-temperature reversible magnetic modulation is realized at a low electric field stimulus of 1 kV cm(−1). The findings of electrostatic proton transfer provide a pathway of proton mediated magnetization control in hierarchical molecular multiferroics. |
format | Online Article Text |
id | pubmed-8322162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-83221622021-08-03 Proton switching molecular magnetoelectricity Hu, Yong Broderick, Scott Guo, Zipeng N’Diaye, Alpha T. Bola, Jaspal S. Malissa, Hans Li, Cheng Zhang, Qiang Huang, Yulong Jia, Quanxi Boehme, Christoph Vardeny, Z. Valy Zhou, Chi Ren, Shenqiang Nat Commun Article The convergence of proton conduction and multiferroics is generating a compelling opportunity to achieve strong magnetoelectric coupling and magneto-ionics, offering a versatile platform to realize molecular magnetoelectrics. Here we describe machine learning coupled with additive manufacturing to accelerate the design strategy for hydrogen-bonded multiferroic macromolecules accompanied by strong proton dependence of magnetic properties. The proton switching magnetoelectricity occurs in three-dimensional molecular heterogeneous solids. It consists of a molecular magnet network as proton reservoir to modulate ferroelectric polarization, while molecular ferroelectrics charging proton transfer to reversibly manipulate magnetism. The magnetoelectric coupling induces a reversible 29% magnetization control at ferroelectric phase transition with a broad thermal hysteresis width of 160 K (192 K to 352 K), while a room-temperature reversible magnetic modulation is realized at a low electric field stimulus of 1 kV cm(−1). The findings of electrostatic proton transfer provide a pathway of proton mediated magnetization control in hierarchical molecular multiferroics. Nature Publishing Group UK 2021-07-29 /pmc/articles/PMC8322162/ /pubmed/34326334 http://dx.doi.org/10.1038/s41467-021-24941-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Hu, Yong Broderick, Scott Guo, Zipeng N’Diaye, Alpha T. Bola, Jaspal S. Malissa, Hans Li, Cheng Zhang, Qiang Huang, Yulong Jia, Quanxi Boehme, Christoph Vardeny, Z. Valy Zhou, Chi Ren, Shenqiang Proton switching molecular magnetoelectricity |
title | Proton switching molecular magnetoelectricity |
title_full | Proton switching molecular magnetoelectricity |
title_fullStr | Proton switching molecular magnetoelectricity |
title_full_unstemmed | Proton switching molecular magnetoelectricity |
title_short | Proton switching molecular magnetoelectricity |
title_sort | proton switching molecular magnetoelectricity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322162/ https://www.ncbi.nlm.nih.gov/pubmed/34326334 http://dx.doi.org/10.1038/s41467-021-24941-9 |
work_keys_str_mv | AT huyong protonswitchingmolecularmagnetoelectricity AT broderickscott protonswitchingmolecularmagnetoelectricity AT guozipeng protonswitchingmolecularmagnetoelectricity AT ndiayealphat protonswitchingmolecularmagnetoelectricity AT bolajaspals protonswitchingmolecularmagnetoelectricity AT malissahans protonswitchingmolecularmagnetoelectricity AT licheng protonswitchingmolecularmagnetoelectricity AT zhangqiang protonswitchingmolecularmagnetoelectricity AT huangyulong protonswitchingmolecularmagnetoelectricity AT jiaquanxi protonswitchingmolecularmagnetoelectricity AT boehmechristoph protonswitchingmolecularmagnetoelectricity AT vardenyzvaly protonswitchingmolecularmagnetoelectricity AT zhouchi protonswitchingmolecularmagnetoelectricity AT renshenqiang protonswitchingmolecularmagnetoelectricity |