Cargando…
Sociodemographic characteristics of missing data in digital phenotyping
The ubiquity of smartphones, with their increasingly sophisticated array of sensors, presents an unprecedented opportunity for researchers to collect longitudinal, diverse, temporally-dense data about human behavior while minimizing participant burden. Researchers increasingly make use of smartphone...
Autores principales: | Kiang, Mathew V., Chen, Jarvis T., Krieger, Nancy, Buckee, Caroline O., Alexander, Monica J., Baker, Justin T., Buckner, Randy L., Coombs, Garth, Rich-Edwards, Janet W., Carlson, Kenzie W., Onnela, Jukka-Pekka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322366/ https://www.ncbi.nlm.nih.gov/pubmed/34326370 http://dx.doi.org/10.1038/s41598-021-94516-7 |
Ejemplares similares
-
Decomposition of the US black/white inequality in premature mortality, 2010–2015: an observational study
por: Kiang, Mathew V, et al.
Publicado: (2019) -
Open-source Longitudinal Sleep Analysis From Accelerometer Data (DPSleep): Algorithm Development and Validation
por: Rahimi-Eichi, Habiballah, et al.
Publicado: (2021) -
Fluctuations in behavior and affect in college students measured using deep phenotyping
por: Vidal Bustamante, Constanza M., et al.
Publicado: (2022) -
Author Correction: Fluctuations in behavior and affect in college students measured using deep phenotyping
por: Vidal Bustamante, Constanza M., et al.
Publicado: (2022) -
Publisher Correction: Fluctuations in behavior and affect in college students measured using deep phenotyping
por: Vidal Bustamante, Constanza M., et al.
Publicado: (2022)