Cargando…
Formation of Lipofuscin-Like Autofluorescent Granules in the Retinal Pigment Epithelium Requires Lysosome Dysfunction
PURPOSE: We aim to characterize the pathways required for autofluorescent granule (AFG) formation by RPE cells using cultured monolayers. METHODS: We fed RPE monolayers in culture with a single pulse of photoreceptor outer segments (POS). After 24 hours the cells started accumulating AFGs that were...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322709/ https://www.ncbi.nlm.nih.gov/pubmed/34313720 http://dx.doi.org/10.1167/iovs.62.9.39 |
Sumario: | PURPOSE: We aim to characterize the pathways required for autofluorescent granule (AFG) formation by RPE cells using cultured monolayers. METHODS: We fed RPE monolayers in culture with a single pulse of photoreceptor outer segments (POS). After 24 hours the cells started accumulating AFGs that were comparable to lipofuscin in vivo. Using this model, we used a variety of light and electron microscopical techniques, flow cytometry and Western blot to analyze the formation of AFGs. We also generated a mutant RPE line lacking cathepsin D by gene editing. RESULTS: AFGs seem to derive from incompletely digested POS-containing phagosomes and after 3 days are surrounded by a single membrane positive for lysosome markers. We show by various methods that lysosome-phagosome fusion is required for AFG formation, and that impairment of lysosomal pH or catalytic activity, particularly cathepsin D activity, enhances AF accumulation. CONCLUSIONS: We conclude that lysosomal dysfunction results in incomplete POS degradation and enhanced AFG accumulation. |
---|