Cargando…
Predicting lncRNA–Protein Interaction With Weighted Graph-Regularized Matrix Factorization
Long non-coding RNAs (lncRNAs) are widely concerned because of their close associations with many key biological activities. Though precise functions of most lncRNAs are unknown, research works show that lncRNAs usually exert biological function by interacting with the corresponding proteins. The ex...
Autores principales: | Sun, Xibo, Cheng, Leiming, Liu, Jinyang, Xie, Cuinan, Yang, Jiasheng, Li, Fu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322775/ https://www.ncbi.nlm.nih.gov/pubmed/34335693 http://dx.doi.org/10.3389/fgene.2021.690096 |
Ejemplares similares
-
IRWNRLPI: Integrating Random Walk and Neighborhood Regularized Logistic Matrix Factorization for lncRNA-Protein Interaction Prediction
por: Zhao, Qi, et al.
Publicado: (2018) -
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Predicting lncRNA-miRNA Interaction via Graph Convolution Auto-Encoder
por: Huang, Yu-An, et al.
Publicado: (2019) -
Multiview Consensus Graph Learning for lncRNA–Disease Association Prediction
por: Tan, Haojiang, et al.
Publicado: (2020) -
Prediction of lncRNA–Disease Associations via Closest Node Weight Graphs of the Spatial Neighborhood Based on the Edge Attention Graph Convolutional Network
por: Li, Jianwei, et al.
Publicado: (2022)