Cargando…
A particle swarm optimization improved BP neural network intelligent model for electrocardiogram classification
BACKGROUND: As proven to reflect the work state of heart and physiological situation objectively, electrocardiogram (ECG) is widely used in the assessment of human health, especially the diagnosis of heart disease. The accuracy and reliability of abnormal ECG (AECG) decision depend to a large extent...
Autores principales: | Li, Guixiang, Tan, Zhongwei, Xu, Weikang, Xu, Fei, Wang, Lei, Chen, Jun, Wu, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8322832/ https://www.ncbi.nlm.nih.gov/pubmed/34330266 http://dx.doi.org/10.1186/s12911-021-01453-6 |
Ejemplares similares
-
A parallel integrated learning technique of improved particle swarm optimization and BP neural network and its application
por: Li, Jingming, et al.
Publicado: (2022) -
Crop Classification by Forward Neural Network with Adaptive Chaotic Particle Swarm Optimization
por: Zhang, Yudong, et al.
Publicado: (2011) -
Chaotic Particle Swarm Optimization with Mutation for Classification
por: Assarzadeh, Zahra, et al.
Publicado: (2015) -
Binary Particle Swarm Optimization Intelligent Feature Optimization Algorithm-Based Magnetic Resonance Image in the Diagnosis of Adrenal Tumor
por: Xu, Jian, et al.
Publicado: (2022) -
Convolutional neural network optimized by differential evolution for electrocardiogram classification
por: Chen, Shan Wei, et al.
Publicado: (2023)