Cargando…

Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite

[Image: see text] Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticle...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuhrts, Lucas, Prévost, Sylvain, Chevrier, Daniel M., Pekker, Péter, Spaeker, Oliver, Egglseder, Mathias, Baumgartner, Jens, Pósfai, Mihály, Faivre, Damien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323100/
https://www.ncbi.nlm.nih.gov/pubmed/34264055
http://dx.doi.org/10.1021/jacs.1c02687
_version_ 1783731179520786432
author Kuhrts, Lucas
Prévost, Sylvain
Chevrier, Daniel M.
Pekker, Péter
Spaeker, Oliver
Egglseder, Mathias
Baumgartner, Jens
Pósfai, Mihály
Faivre, Damien
author_facet Kuhrts, Lucas
Prévost, Sylvain
Chevrier, Daniel M.
Pekker, Péter
Spaeker, Oliver
Egglseder, Mathias
Baumgartner, Jens
Pósfai, Mihály
Faivre, Damien
author_sort Kuhrts, Lucas
collection PubMed
description [Image: see text] Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticles with sophistication unmatched by synthetic efforts at ambient conditions. Here, using in situ small-angle X-ray scattering, we demonstrate how the addition of poly(arginine) in the synthetic formation of magnetite nanoparticles induces a biomineralization-reminiscent pathway. The addition of poly(arginine) stabilizes an amorphous ferrihydrite precursor, shifting the magnetite formation pathway from thermodynamic to kinetic control. Altering the energetic landscape of magnetite formation by catalyzing the pH-dependent precursor attachment, we tune magnetite nanoparticle size continuously, exceeding sizes observed in magnetotactic bacteria. This mechanistic shift we uncover here further allows for crystal morphology control by adjusting the pH-dependent interfacial interaction between liquidlike ferrihydrite and nascent magnetite nanoparticles, establishing a new strategy to control nanoparticle morphology. Synthesizing compact single crystals at wetting conditions and unique semicontinuous single-crystalline nanoparticles at dewetting conditions in combination with an improved control over magnetite crystallite size, we demonstrate the versatility of bio-inspired, kinetically controlled nanoparticle formation pathways.
format Online
Article
Text
id pubmed-8323100
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-83231002021-08-02 Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite Kuhrts, Lucas Prévost, Sylvain Chevrier, Daniel M. Pekker, Péter Spaeker, Oliver Egglseder, Mathias Baumgartner, Jens Pósfai, Mihály Faivre, Damien J Am Chem Soc [Image: see text] Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticles with sophistication unmatched by synthetic efforts at ambient conditions. Here, using in situ small-angle X-ray scattering, we demonstrate how the addition of poly(arginine) in the synthetic formation of magnetite nanoparticles induces a biomineralization-reminiscent pathway. The addition of poly(arginine) stabilizes an amorphous ferrihydrite precursor, shifting the magnetite formation pathway from thermodynamic to kinetic control. Altering the energetic landscape of magnetite formation by catalyzing the pH-dependent precursor attachment, we tune magnetite nanoparticle size continuously, exceeding sizes observed in magnetotactic bacteria. This mechanistic shift we uncover here further allows for crystal morphology control by adjusting the pH-dependent interfacial interaction between liquidlike ferrihydrite and nascent magnetite nanoparticles, establishing a new strategy to control nanoparticle morphology. Synthesizing compact single crystals at wetting conditions and unique semicontinuous single-crystalline nanoparticles at dewetting conditions in combination with an improved control over magnetite crystallite size, we demonstrate the versatility of bio-inspired, kinetically controlled nanoparticle formation pathways. American Chemical Society 2021-07-15 2021-07-28 /pmc/articles/PMC8323100/ /pubmed/34264055 http://dx.doi.org/10.1021/jacs.1c02687 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Kuhrts, Lucas
Prévost, Sylvain
Chevrier, Daniel M.
Pekker, Péter
Spaeker, Oliver
Egglseder, Mathias
Baumgartner, Jens
Pósfai, Mihály
Faivre, Damien
Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite
title Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite
title_full Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite
title_fullStr Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite
title_full_unstemmed Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite
title_short Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite
title_sort wettability of magnetite nanoparticles guides growth from stabilized amorphous ferrihydrite
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323100/
https://www.ncbi.nlm.nih.gov/pubmed/34264055
http://dx.doi.org/10.1021/jacs.1c02687
work_keys_str_mv AT kuhrtslucas wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite
AT prevostsylvain wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite
AT chevrierdanielm wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite
AT pekkerpeter wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite
AT spaekeroliver wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite
AT egglsedermathias wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite
AT baumgartnerjens wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite
AT posfaimihaly wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite
AT faivredamien wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite