Cargando…
Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite
[Image: see text] Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticle...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323100/ https://www.ncbi.nlm.nih.gov/pubmed/34264055 http://dx.doi.org/10.1021/jacs.1c02687 |
_version_ | 1783731179520786432 |
---|---|
author | Kuhrts, Lucas Prévost, Sylvain Chevrier, Daniel M. Pekker, Péter Spaeker, Oliver Egglseder, Mathias Baumgartner, Jens Pósfai, Mihály Faivre, Damien |
author_facet | Kuhrts, Lucas Prévost, Sylvain Chevrier, Daniel M. Pekker, Péter Spaeker, Oliver Egglseder, Mathias Baumgartner, Jens Pósfai, Mihály Faivre, Damien |
author_sort | Kuhrts, Lucas |
collection | PubMed |
description | [Image: see text] Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticles with sophistication unmatched by synthetic efforts at ambient conditions. Here, using in situ small-angle X-ray scattering, we demonstrate how the addition of poly(arginine) in the synthetic formation of magnetite nanoparticles induces a biomineralization-reminiscent pathway. The addition of poly(arginine) stabilizes an amorphous ferrihydrite precursor, shifting the magnetite formation pathway from thermodynamic to kinetic control. Altering the energetic landscape of magnetite formation by catalyzing the pH-dependent precursor attachment, we tune magnetite nanoparticle size continuously, exceeding sizes observed in magnetotactic bacteria. This mechanistic shift we uncover here further allows for crystal morphology control by adjusting the pH-dependent interfacial interaction between liquidlike ferrihydrite and nascent magnetite nanoparticles, establishing a new strategy to control nanoparticle morphology. Synthesizing compact single crystals at wetting conditions and unique semicontinuous single-crystalline nanoparticles at dewetting conditions in combination with an improved control over magnetite crystallite size, we demonstrate the versatility of bio-inspired, kinetically controlled nanoparticle formation pathways. |
format | Online Article Text |
id | pubmed-8323100 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-83231002021-08-02 Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite Kuhrts, Lucas Prévost, Sylvain Chevrier, Daniel M. Pekker, Péter Spaeker, Oliver Egglseder, Mathias Baumgartner, Jens Pósfai, Mihály Faivre, Damien J Am Chem Soc [Image: see text] Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticles with sophistication unmatched by synthetic efforts at ambient conditions. Here, using in situ small-angle X-ray scattering, we demonstrate how the addition of poly(arginine) in the synthetic formation of magnetite nanoparticles induces a biomineralization-reminiscent pathway. The addition of poly(arginine) stabilizes an amorphous ferrihydrite precursor, shifting the magnetite formation pathway from thermodynamic to kinetic control. Altering the energetic landscape of magnetite formation by catalyzing the pH-dependent precursor attachment, we tune magnetite nanoparticle size continuously, exceeding sizes observed in magnetotactic bacteria. This mechanistic shift we uncover here further allows for crystal morphology control by adjusting the pH-dependent interfacial interaction between liquidlike ferrihydrite and nascent magnetite nanoparticles, establishing a new strategy to control nanoparticle morphology. Synthesizing compact single crystals at wetting conditions and unique semicontinuous single-crystalline nanoparticles at dewetting conditions in combination with an improved control over magnetite crystallite size, we demonstrate the versatility of bio-inspired, kinetically controlled nanoparticle formation pathways. American Chemical Society 2021-07-15 2021-07-28 /pmc/articles/PMC8323100/ /pubmed/34264055 http://dx.doi.org/10.1021/jacs.1c02687 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Kuhrts, Lucas Prévost, Sylvain Chevrier, Daniel M. Pekker, Péter Spaeker, Oliver Egglseder, Mathias Baumgartner, Jens Pósfai, Mihály Faivre, Damien Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite |
title | Wettability
of Magnetite Nanoparticles Guides Growth
from Stabilized Amorphous Ferrihydrite |
title_full | Wettability
of Magnetite Nanoparticles Guides Growth
from Stabilized Amorphous Ferrihydrite |
title_fullStr | Wettability
of Magnetite Nanoparticles Guides Growth
from Stabilized Amorphous Ferrihydrite |
title_full_unstemmed | Wettability
of Magnetite Nanoparticles Guides Growth
from Stabilized Amorphous Ferrihydrite |
title_short | Wettability
of Magnetite Nanoparticles Guides Growth
from Stabilized Amorphous Ferrihydrite |
title_sort | wettability
of magnetite nanoparticles guides growth
from stabilized amorphous ferrihydrite |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323100/ https://www.ncbi.nlm.nih.gov/pubmed/34264055 http://dx.doi.org/10.1021/jacs.1c02687 |
work_keys_str_mv | AT kuhrtslucas wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite AT prevostsylvain wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite AT chevrierdanielm wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite AT pekkerpeter wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite AT spaekeroliver wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite AT egglsedermathias wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite AT baumgartnerjens wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite AT posfaimihaly wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite AT faivredamien wettabilityofmagnetitenanoparticlesguidesgrowthfromstabilizedamorphousferrihydrite |