Cargando…
Study on the semi-supervised learning-based patient similarity from heterogeneous electronic medical records
BACKGROUND: A new learning-based patient similarity measurement was proposed to measure patients’ similarity for heterogeneous electronic medical records (EMRs) data. METHODS: We first calculated feature-level similarities according to the features’ attributes. A domain expert provided patient simil...
Autores principales: | Wang, Ni, Huang, Yanqun, Liu, Honglei, Zhang, Zhiqiang, Wei, Lan, Fei, Xiaolu, Chen, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323210/ https://www.ncbi.nlm.nih.gov/pubmed/34330261 http://dx.doi.org/10.1186/s12911-021-01432-x |
Ejemplares similares
-
Measurement and application of patient similarity in personalized predictive modeling based on electronic medical records
por: Wang, Ni, et al.
Publicado: (2019) -
Patient Representation From Structured Electronic Medical Records Based on Embedding Technique: Development and Validation Study
por: Huang, Yanqun, et al.
Publicado: (2021) -
Improving the Performance of Outcome Prediction for Inpatients With Acute Myocardial Infarction Based on Embedding Representation Learned From Electronic Medical Records: Development and Validation Study
por: Huang, Yanqun, et al.
Publicado: (2022) -
Graph-Based Self-Training for Semi-Supervised Deep Similarity Learning
por: Wang, Yifan, et al.
Publicado: (2023) -
Semi-supervised learning /
Publicado: (2010)