Cargando…
Multi-label classification of fundus images based on graph convolutional network
BACKGROUND: Diabetic Retinopathy (DR) is the most common and serious microvascular complication in the diabetic population. Using computer-aided diagnosis from the fundus images has become a method of detecting retinal diseases, but the detection of multiple lesions is still a difficult point in cur...
Autores principales: | Cheng, Yinlin, Ma, Mengnan, Li, Xingyu, Zhou, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323219/ https://www.ncbi.nlm.nih.gov/pubmed/34330270 http://dx.doi.org/10.1186/s12911-021-01424-x |
Ejemplares similares
-
Automated fundus ultrasound image classification based on siamese convolutional neural networks with multi-attention
por: Tan, Jiachen, et al.
Publicado: (2023) -
Discriminative-Region Multi-Label Classification of Ultra-Widefield Fundus Images
por: Pham, Van-Nguyen, et al.
Publicado: (2023) -
Multi-Label Fundus Image Classification Using Attention Mechanisms and Feature Fusion
por: Li, Zhenwei, et al.
Publicado: (2022) -
An Invertible Dynamic Graph Convolutional Network for Multi-Center ASD Classification
por: Chen, Yueying, et al.
Publicado: (2022) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023)