Cargando…
Automated classification of clinical trial eligibility criteria text based on ensemble learning and metric learning
BACKGROUND: Eligibility criteria are the primary strategy for screening the target participants of a clinical trial. Automated classification of clinical trial eligibility criteria text by using machine learning methods improves recruitment efficiency to reduce the cost of clinical research. However...
Autores principales: | Zeng, Kun, Xu, Yibin, Lin, Ge, Liang, Likeng, Hao, Tianyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323220/ https://www.ncbi.nlm.nih.gov/pubmed/34330259 http://dx.doi.org/10.1186/s12911-021-01492-z |
Ejemplares similares
-
An Ensemble Learning Strategy for Eligibility Criteria Text Classification for Clinical Trial Recruitment: Algorithm Development and Validation
por: Zeng, Kun, et al.
Publicado: (2020) -
Improving the Efficiency of Clinical Trial Recruitment Using an Ensemble Machine Learning to Assist With Eligibility Screening
por: Cai, Tianrun, et al.
Publicado: (2021) -
Semantic categorization of Chinese eligibility criteria in clinical trials using machine learning methods
por: Zong, Hui, et al.
Publicado: (2021) -
Comparison of Bagging and Boosting Ensemble Machine Learning Methods for Automated EMG Signal Classification
por: Yaman, Emine, et al.
Publicado: (2019) -
Machine learning enabled subgroup analysis with real-world data to inform clinical trial eligibility criteria design
por: Xu, Jie, et al.
Publicado: (2023)