Cargando…
Research on epileptic EEG recognition based on improved residual networks of 1-D CNN and indRNN
BACKGROUND: Epilepsy is one of the diseases of the nervous system, which has a large population in the world. Traditional diagnosis methods mostly depended on the professional neurologists’ reading of the electroencephalogram (EEG), which was time-consuming, inefficient, and subjective. In recent ye...
Autores principales: | Ma, Mengnan, Cheng, Yinlin, Wei, Xiaoyan, Chen, Ziyi, Zhou, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323263/ https://www.ncbi.nlm.nih.gov/pubmed/34330248 http://dx.doi.org/10.1186/s12911-021-01438-5 |
Ejemplares similares
-
Prediction of COVID-19 epidemic situation via fine-tuned IndRNN
por: Hong, Zhonghua, et al.
Publicado: (2021) -
Forecasting oil consumption with attention-based IndRNN optimized by adaptive differential evolution
por: Wu, Binrong, et al.
Publicado: (2022) -
A Framework of Combining Short-Term Spatial/Frequency Feature Extraction and Long-Term IndRNN for Activity Recognition †
por: Zhao, Beidi, et al.
Publicado: (2020) -
Spatiotemporal evolution of epileptic seizure based on mutual information and dynamic brain network
por: Ma, Mengnan, et al.
Publicado: (2021) -
RNN and BiLSTM Fusion for Accurate Automatic Epileptic Seizure Diagnosis Using EEG Signals
por: Samee, Nagwan Abdel, et al.
Publicado: (2022)