Cargando…

NR1D1 suppressed the growth of ovarian cancer by abrogating the JAK/STAT3 signaling pathway

BACKGROUND: Nuclear receptor subfamily 1 group D member 1 (NR1D1), a nuclear receptor associated with a variety of physiological processes, has a low level in ovarian cancer tissues compared with adjacent normal tissues. However, its role in ovarian cancer remains unclear. METHODS: The level of NR1D...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Huailin, Fu, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323274/
https://www.ncbi.nlm.nih.gov/pubmed/34330232
http://dx.doi.org/10.1186/s12885-021-08597-8
Descripción
Sumario:BACKGROUND: Nuclear receptor subfamily 1 group D member 1 (NR1D1), a nuclear receptor associated with a variety of physiological processes, has a low level in ovarian cancer tissues compared with adjacent normal tissues. However, its role in ovarian cancer remains unclear. METHODS: The level of NR1D1 in ovarian cancer cells was determined by quantitative real-time PCR. Its role in ovarian cancer was explored through gain-of-function and lose-of-function. Cell growth was evaluated by CCK8 assay, immunofluorescence and flow cytometry. Western blot was conducted to assess the activation of JAK/STAT3 signaling pathway. A xenograft model of ovarian cancer was established to explore the role of NR1D1 in vivo. RESULTS: Up-regulation of NR1D1 repressed the ovarian cancer cell proliferation and induced cell cycle arrest and apoptosis, while silencing NR1D1 promoted their proliferation and G1/S transition. In addition, the JAK/STAT3 signaling pathway, an intracellular signal transduction closely associated with cancer progression, was inhibited by NR1D1. Consistently, xenografts with NR1D1 over-expression grew more slowly in vivo than the controls. Furthermore, NR1D1 up-regulated the expression of suppressor of cytokine signaling 3 (SOCS3), an inhibitor of the JAK/STAT3 signaling pathway. Whereas, SOCS3 silencing abolished the function of NR1D1 over-expression on ovarian cancer growth and JAK/STAT3 signaling pathway. CONCLUSIONS: NR1D1 up-regulated the expression of SOCS3, resulting in suppression of the JAK/STAT3 signaling pathway, thus retarding the growth of ovarian cancer cells. This study highlights a profound role of NR1D1 in the treatment of ovarian cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12885-021-08597-8.