Cargando…

Imaging features associated with idiopathic normal pressure hydrocephalus have high specificity even when comparing with vascular dementia and atypical parkinsonism

BACKGROUND: Vascular dementia (VaD) and atypical parkinsonism often present with symptoms that can resemble idiopathic normal pressure hydrocephalus (iNPH) and enlarged cerebral ventricles, and can be challenging differential diagnoses. The aim was to investigate frequencies of imaging features usua...

Descripción completa

Detalles Bibliográficos
Autores principales: Fällmar, David, Andersson, Oliver, Kilander, Lena, Löwenmark, Malin, Nyholm, Dag, Virhammar, Johan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323278/
https://www.ncbi.nlm.nih.gov/pubmed/34325703
http://dx.doi.org/10.1186/s12987-021-00270-3
Descripción
Sumario:BACKGROUND: Vascular dementia (VaD) and atypical parkinsonism often present with symptoms that can resemble idiopathic normal pressure hydrocephalus (iNPH) and enlarged cerebral ventricles, and can be challenging differential diagnoses. The aim was to investigate frequencies of imaging features usually associated with iNPH and their radiological diagnostic accuracy in a sample containing the relevant differential diagnoses VaD, progressive supranuclear palsy (PSP), multiple system atrophy parkinsonian type (MSA-P), and healthy controls. METHODS: Nine morphological imaging features usually associated with iNPH were retrospectively investigated in MR images of 55 patients with shunt-responsive iNPH, 32 patients with VaD, 30 patients with PSP, 27 patients with MSA-P, and 39 age-matched healthy controls. Logistic regression and receiver operating characteristic curves were used to assess diagnostic accuracy, sensitivity, and specificity for each imaging finding. RESULTS: In a logistic regression model using iNPH diagnosis as a dependent variable, the following imaging features contributed significantly to the model: callosal angle (OR = 0.95 (0.92–0.99), p = 0.012), Evans’ index * 100 (OR = 1.51 (1.23–1.86), p < 0.001), enlarged Sylvian fissures (OR = 6.01 (1.42–25.40), p = 0.015), and focally enlarged sulci (OR = 10.18 (1.89–55.02), p = 0.007). Imaging features with 95% specificity for iNPH were: callosal angle ≤ 71°, temporal horns ≥ 7 mm, Evans’ index ≥ 0.37, iNPH Radscale ≥ 9, and presence of DESH, bilateral ventricular roof bulgings or focally enlarged sulci. A simplified version of the iNPH Radscale with only four features resulted in equally high diagnostic accuracy as the original iNPH Radscale. CONCLUSIONS: There is a notable overlap between some of the commonly used imaging markers regarding iNPH, VaD and atypical parkinsonism, such as PSP. However, this study shows that the specificity of imaging markers usually associated with iNPH was high even when comparing with these challenging differential diagnoses. The callosal angle was the single imaging feature with highest diagnostic accuracy to discriminate iNPH from its mimics. A simplified rating scale using only a few selected features could be used with retained specificity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12987-021-00270-3.