Cargando…
An efficient linear mixed model framework for meta-analytic association studies across multiple contexts
Linear mixed models (LMMs) can be applied in the meta-analyses of responses from individuals across multiple contexts, increasing power to detect associations while accounting for confounding effects arising from within-individual variation. However, traditional approaches to fitting these models ca...
Autores principales: | Jew, Brandon, Li, Jiajin, Sankararaman, Sriram, Sul, Jae Hoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323485/ https://www.ncbi.nlm.nih.gov/pubmed/34335990 |
Ejemplares similares
-
Rare variants in the endocytic pathway are associated with Alzheimer’s disease, its related phenotypes, and functional consequences
por: Zhan, Lingyu, et al.
Publicado: (2021) -
ForestQC: Quality control on genetic variants from next-generation sequencing data using random forest
por: Li, Jiajin, et al.
Publicado: (2019) -
Effectively Identifying eQTLs from Multiple Tissues by Combining Mixed Model and Meta-analytic Approaches
por: Sul, Jae Hoon, et al.
Publicado: (2013) -
Efficient variance components analysis across millions of genomes
por: Pazokitoroudi, Ali, et al.
Publicado: (2020) -
Rare variants regulate expression of nearby individual genes in multiple tissues
por: Li, Jiajin, et al.
Publicado: (2021)