Cargando…
Effect of modified pomace on copper migration via riverbank soil in southwest China
To explore the effects of modified pomace on copper migration via the soil on the banks of the rivers in northern Sichuan and Chongqing, fruit pomace (P) and ethylene diamine tetra-acetic acid (EDTA) modified P (EP) were evenly added (1% mass ratio) to the soil samples of Guanyuan, Nanbu, Jialing, a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323602/ https://www.ncbi.nlm.nih.gov/pubmed/34395084 http://dx.doi.org/10.7717/peerj.11844 |
_version_ | 1783731274672766976 |
---|---|
author | Chen, Lingyuan Abbas, Touqeer Yang, Lin Xu, Yao Deng, Hongyan Hou, Lei Li, Wenbin |
author_facet | Chen, Lingyuan Abbas, Touqeer Yang, Lin Xu, Yao Deng, Hongyan Hou, Lei Li, Wenbin |
author_sort | Chen, Lingyuan |
collection | PubMed |
description | To explore the effects of modified pomace on copper migration via the soil on the banks of the rivers in northern Sichuan and Chongqing, fruit pomace (P) and ethylene diamine tetra-acetic acid (EDTA) modified P (EP) were evenly added (1% mass ratio) to the soil samples of Guanyuan, Nanbu, Jialing, and Hechuan from the Jialing River; Mianyang and Suining from the Fu River; and Guangan and Dazhou from the Qu River. The geochemical characteristics and migration rules of copper in different amended soils were simulated by column experiment. Results showed that the permeation time of copper in each soil column was categorized as EP-amended > P-amended > original soil, and the permeation time of amended soil samples at different locations was Jialing > Suining > Mianyang > Guangan > Dazhou > Nanbu > Guanyuan > Hechuan. Meanwhile, the average flow rate of copper in each soil column showed a reverse trend with the permeation time. Copper in exchangeable, carbonate, and iron–manganese oxide forms decreased with the increase of vertical depth in the soil column, among which the most evident decreases appeared in the carbonate-bonding form. The copper accumulation in different locations presented a trend of Jialing > Suining > Mianyang > Guangan > Dazhou > Nanbu > Guangyuan > Hechuan, and the copper content under the same soil showed EP-amended > P-amended > original soil. The copper proportion of the carbonate form was the highest in each soil sample, followed by the exchangeable form. The proportions of iron-manganese oxide and organic matter forms were relatively small. A significant correlation was observed between the cation exchange capacity and the copper content in exchangeable and carbonate forms. Moreover, total organic carbon and copper contents were negatively correlated. |
format | Online Article Text |
id | pubmed-8323602 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83236022021-08-13 Effect of modified pomace on copper migration via riverbank soil in southwest China Chen, Lingyuan Abbas, Touqeer Yang, Lin Xu, Yao Deng, Hongyan Hou, Lei Li, Wenbin PeerJ Soil Science To explore the effects of modified pomace on copper migration via the soil on the banks of the rivers in northern Sichuan and Chongqing, fruit pomace (P) and ethylene diamine tetra-acetic acid (EDTA) modified P (EP) were evenly added (1% mass ratio) to the soil samples of Guanyuan, Nanbu, Jialing, and Hechuan from the Jialing River; Mianyang and Suining from the Fu River; and Guangan and Dazhou from the Qu River. The geochemical characteristics and migration rules of copper in different amended soils were simulated by column experiment. Results showed that the permeation time of copper in each soil column was categorized as EP-amended > P-amended > original soil, and the permeation time of amended soil samples at different locations was Jialing > Suining > Mianyang > Guangan > Dazhou > Nanbu > Guanyuan > Hechuan. Meanwhile, the average flow rate of copper in each soil column showed a reverse trend with the permeation time. Copper in exchangeable, carbonate, and iron–manganese oxide forms decreased with the increase of vertical depth in the soil column, among which the most evident decreases appeared in the carbonate-bonding form. The copper accumulation in different locations presented a trend of Jialing > Suining > Mianyang > Guangan > Dazhou > Nanbu > Guangyuan > Hechuan, and the copper content under the same soil showed EP-amended > P-amended > original soil. The copper proportion of the carbonate form was the highest in each soil sample, followed by the exchangeable form. The proportions of iron-manganese oxide and organic matter forms were relatively small. A significant correlation was observed between the cation exchange capacity and the copper content in exchangeable and carbonate forms. Moreover, total organic carbon and copper contents were negatively correlated. PeerJ Inc. 2021-07-27 /pmc/articles/PMC8323602/ /pubmed/34395084 http://dx.doi.org/10.7717/peerj.11844 Text en © 2021 Chen et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Soil Science Chen, Lingyuan Abbas, Touqeer Yang, Lin Xu, Yao Deng, Hongyan Hou, Lei Li, Wenbin Effect of modified pomace on copper migration via riverbank soil in southwest China |
title | Effect of modified pomace on copper migration via riverbank soil in southwest China |
title_full | Effect of modified pomace on copper migration via riverbank soil in southwest China |
title_fullStr | Effect of modified pomace on copper migration via riverbank soil in southwest China |
title_full_unstemmed | Effect of modified pomace on copper migration via riverbank soil in southwest China |
title_short | Effect of modified pomace on copper migration via riverbank soil in southwest China |
title_sort | effect of modified pomace on copper migration via riverbank soil in southwest china |
topic | Soil Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323602/ https://www.ncbi.nlm.nih.gov/pubmed/34395084 http://dx.doi.org/10.7717/peerj.11844 |
work_keys_str_mv | AT chenlingyuan effectofmodifiedpomaceoncoppermigrationviariverbanksoilinsouthwestchina AT abbastouqeer effectofmodifiedpomaceoncoppermigrationviariverbanksoilinsouthwestchina AT yanglin effectofmodifiedpomaceoncoppermigrationviariverbanksoilinsouthwestchina AT xuyao effectofmodifiedpomaceoncoppermigrationviariverbanksoilinsouthwestchina AT denghongyan effectofmodifiedpomaceoncoppermigrationviariverbanksoilinsouthwestchina AT houlei effectofmodifiedpomaceoncoppermigrationviariverbanksoilinsouthwestchina AT liwenbin effectofmodifiedpomaceoncoppermigrationviariverbanksoilinsouthwestchina |