Cargando…

Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model

Patients with Parkinson’s disease (PD) have impaired insulin signaling in the brain. Incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), can re-sensitize insulin signaling. In a recent phase II clinical trial, the first GLP-1 mimic, ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ling-Yu, Jin, Qian-Qian, Hölscher, Christian, Li, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323666/
https://www.ncbi.nlm.nih.gov/pubmed/33433498
http://dx.doi.org/10.4103/1673-5374.303045
_version_ 1783731286493364224
author Zhang, Ling-Yu
Jin, Qian-Qian
Hölscher, Christian
Li, Lin
author_facet Zhang, Ling-Yu
Jin, Qian-Qian
Hölscher, Christian
Li, Lin
author_sort Zhang, Ling-Yu
collection PubMed
description Patients with Parkinson’s disease (PD) have impaired insulin signaling in the brain. Incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), can re-sensitize insulin signaling. In a recent phase II clinical trial, the first GLP-1 mimic, exendin-4, has shown reliable curative effect in patients with PD. DA-CH5 is a novel GLP-1/GIP receptor unimolecular co-agonist with a novel peptide sequence added to cross the blood-brain barrier. Here we showed that both exendin-4 and DA-CH5 protected against 6-hydroxydopamine (6-OHDA) cytotoxicity, inhibited apoptosis, improved mitogenesis and induced autophagy flux in SH-SY5Y cells via activation of the insulin receptor substrate-1 (IRS-1)/alpha serine/threonine-protein kinase (Akt)/cAMP response element-binding protein (CREB) pathway. We also found that DA-CH5 (10 nmol/kg) daily intraperitoneal administration for 30 days post-lesion alleviated motor dysfunction in rats and prevented stereotactic unilateral administration of 6-OHDA induced dopaminergic neurons loss in the substantia nigra pars compacta. However, DA-CH5 showed curative effects in reducing the levels of α-synuclein and the levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β). It was also more effective than exendin-4 in inhibiting apoptotic process and protecting mitochondrial functions. In addition, insulin resistance was largely alleviated and the expression of autophagy-related proteins was up-regulated in PD model rats after DA-CH5 treatment. These results in this study indicate DA-CH5 plays a therapeutic role in the 6-OHDA-unilaterally lesioned PD rat model and is superior to GLP-1 analogue exendin-4. The study was approved by the Animal Ethics Committee of Shanxi Medical University of China.
format Online
Article
Text
id pubmed-8323666
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Wolters Kluwer - Medknow
record_format MEDLINE/PubMed
spelling pubmed-83236662021-08-11 Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model Zhang, Ling-Yu Jin, Qian-Qian Hölscher, Christian Li, Lin Neural Regen Res Research Article Patients with Parkinson’s disease (PD) have impaired insulin signaling in the brain. Incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), can re-sensitize insulin signaling. In a recent phase II clinical trial, the first GLP-1 mimic, exendin-4, has shown reliable curative effect in patients with PD. DA-CH5 is a novel GLP-1/GIP receptor unimolecular co-agonist with a novel peptide sequence added to cross the blood-brain barrier. Here we showed that both exendin-4 and DA-CH5 protected against 6-hydroxydopamine (6-OHDA) cytotoxicity, inhibited apoptosis, improved mitogenesis and induced autophagy flux in SH-SY5Y cells via activation of the insulin receptor substrate-1 (IRS-1)/alpha serine/threonine-protein kinase (Akt)/cAMP response element-binding protein (CREB) pathway. We also found that DA-CH5 (10 nmol/kg) daily intraperitoneal administration for 30 days post-lesion alleviated motor dysfunction in rats and prevented stereotactic unilateral administration of 6-OHDA induced dopaminergic neurons loss in the substantia nigra pars compacta. However, DA-CH5 showed curative effects in reducing the levels of α-synuclein and the levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β). It was also more effective than exendin-4 in inhibiting apoptotic process and protecting mitochondrial functions. In addition, insulin resistance was largely alleviated and the expression of autophagy-related proteins was up-regulated in PD model rats after DA-CH5 treatment. These results in this study indicate DA-CH5 plays a therapeutic role in the 6-OHDA-unilaterally lesioned PD rat model and is superior to GLP-1 analogue exendin-4. The study was approved by the Animal Ethics Committee of Shanxi Medical University of China. Wolters Kluwer - Medknow 2021-01-07 /pmc/articles/PMC8323666/ /pubmed/33433498 http://dx.doi.org/10.4103/1673-5374.303045 Text en Copyright: © 2021 Neural Regeneration Research https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
spellingShingle Research Article
Zhang, Ling-Yu
Jin, Qian-Qian
Hölscher, Christian
Li, Lin
Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model
title Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model
title_full Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model
title_fullStr Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model
title_full_unstemmed Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model
title_short Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat Parkinson model
title_sort glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist da-ch5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat parkinson model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323666/
https://www.ncbi.nlm.nih.gov/pubmed/33433498
http://dx.doi.org/10.4103/1673-5374.303045
work_keys_str_mv AT zhanglingyu glucagonlikepeptide1glucosedependentinsulinotropicpolypeptidedualreceptoragonistdach5issuperiortoexendin4inprotectingneuronsinthe6hydroxydopamineratparkinsonmodel
AT jinqianqian glucagonlikepeptide1glucosedependentinsulinotropicpolypeptidedualreceptoragonistdach5issuperiortoexendin4inprotectingneuronsinthe6hydroxydopamineratparkinsonmodel
AT holscherchristian glucagonlikepeptide1glucosedependentinsulinotropicpolypeptidedualreceptoragonistdach5issuperiortoexendin4inprotectingneuronsinthe6hydroxydopamineratparkinsonmodel
AT lilin glucagonlikepeptide1glucosedependentinsulinotropicpolypeptidedualreceptoragonistdach5issuperiortoexendin4inprotectingneuronsinthe6hydroxydopamineratparkinsonmodel