Cargando…
Spatial position constraint for unsupervised learning of speech representations
The success of supervised learning techniques for automatic speech processing does not always extend to problems with limited annotated speech. Unsupervised representation learning aims at utilizing unlabelled data to learn a transformation that makes speech easily distinguishable for classification...
Autores principales: | Humayun, Mohammad Ali, Yassin, Hayati, Abas, Pg Emeroylariffion |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323719/ https://www.ncbi.nlm.nih.gov/pubmed/34395866 http://dx.doi.org/10.7717/peerj-cs.650 |
Ejemplares similares
-
Evaluation of MRI Denoising Methods Using Unsupervised Learning
por: Moreno López, Marc, et al.
Publicado: (2021) -
Unsupervised online multitask learning of behavioral sentence embeddings
por: Tseng, Shao-Yen, et al.
Publicado: (2019) -
A transformer fine-tuning strategy for text dialect identification
por: Humayun, Mohammad Ali, et al.
Publicado: (2022) -
Generative Adversarial Phonology: Modeling Unsupervised Phonetic and Phonological Learning With Neural Networks
por: Beguš, Gašper
Publicado: (2020) -
Inheritance metrics feats in unsupervised learning to classify unlabeled datasets and clusters in fault prediction
por: Aziz, Syed Rashid, et al.
Publicado: (2021)