Cargando…
Peax: Interactive Visual Pattern Search in Sequential Data Using Unsupervised Deep Representation Learning
We present Peax, a novel feature-based technique for interactive visual pattern search in sequential data, like time series or data mapped to a genome sequence. Visually searching for patterns by similarity is often challenging because of the large search space, the visual complexity of patterns, an...
Autores principales: | Lekschas, Fritz, Peterson, Brant, Haehn, Daniel, Ma, Eric, Gehlenborg, Nils, Pfister, Hanspeter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323802/ https://www.ncbi.nlm.nih.gov/pubmed/34334852 http://dx.doi.org/10.1111/cgf.13971 |
Ejemplares similares
-
SATORI: a system for ontology-guided visual exploration of biomedical data repositories
por: Lekschas, Fritz, et al.
Publicado: (2018) -
HiGlass: web-based visual exploration and analysis of genome interaction maps
por: Kerpedjiev, Peter, et al.
Publicado: (2018) -
Unsupervised classification of plethysmography signals with advanced visual representations
por: Germain, Thibaut, et al.
Publicado: (2023) -
Multi-View Design Patterns and Responsive Visualization for Genomics Data
por: L’Yi, Sehi, et al.
Publicado: (2023) -
Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation
por: Khaligh-Razavi, Seyed-Mahdi, et al.
Publicado: (2014)