Cargando…
Deep learning with robustness to missing data: A novel approach to the detection of COVID-19
In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN...
Autores principales: | Çallı, Erdi, Murphy, Keelin, Kurstjens, Steef, Samson, Tijs, Herpers, Robert, Smits, Henk, Rutten, Matthieu, van Ginneken, Bram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323880/ https://www.ncbi.nlm.nih.gov/pubmed/34329354 http://dx.doi.org/10.1371/journal.pone.0255301 |
Ejemplares similares
-
Explainable emphysema detection on chest radiographs with deep learning
por: Çallı, Erdi, et al.
Publicado: (2022) -
COVID-19 on Chest Radiographs: A Multireader Evaluation of an Artificial Intelligence System
por: Murphy, Keelin, et al.
Publicado: (2020) -
Automated estimation of total lung volume using chest radiographs and deep learning
por: Sogancioglu, Ecem, et al.
Publicado: (2022) -
Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans
por: Hendrix, Ward, et al.
Publicado: (2023) -
Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning
por: van Ginneken, Bram
Publicado: (2017)