Cargando…
Development of an artificial neural network as a tool for predicting the chemical attributes of fresh peach fruits
This investigation aimed to develop a method to predict the total soluble solids (TSS), titratable acidity, TSS/titratable acidity, vitamin C, anthocyanin, and total carotenoids contents using surface color values (L*, Hue and chroma), single fruit weight, juice volume, and sphericity percent of fre...
Autores principales: | Abdel-Sattar, Mahmoud, Al-Obeed, Rashid S., Aboukarima, Abdulwahed M., Eshra, Dalia H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323929/ https://www.ncbi.nlm.nih.gov/pubmed/34329308 http://dx.doi.org/10.1371/journal.pone.0251185 |
Ejemplares similares
-
Physico-Chemical Properties Prediction of Flame Seedless Grape Berries Using an Artificial Neural Network Model
por: Al-Saif, Adel M., et al.
Publicado: (2022) -
Identification of Indian jujube varieties cultivated in Saudi Arabia using an artificial neural network
por: Al-Saif, Adel M., et al.
Publicado: (2021) -
Application of artificial neural network and support vector regression in predicting mass of ber fruits (Ziziphus mauritiana Lamk.) based on fruit axial dimensions
por: Abdel-Sattar, Mahmoud, et al.
Publicado: (2021) -
Impact of organic manure on fruit set, fruit retention, yield, and nutritional status in pomegranate (Punica granatum L. “Wonderful”) under water and mineral fertilization deficits
por: Abdel-Sattar, Mahmoud, et al.
Publicado: (2021) -
Influence of rootstocks on fruit physical and chemical properties of peach cv. UFSun
por: Shahkoomahally, Shirin, et al.
Publicado: (2020)